Code Monkey home page Code Monkey logo

torchcomp's Introduction

TorchComp

Differentiable dynamic range controller in PyTorch.

Installation

pip install torchcomp

Compressor/Expander gain function

This function calculates the gain reduction $g[n]$ for a compressor/expander. It takes the RMS of the input signal $x[n]$ and the compressor/expander parameters as input. The function returns the gain $g[n]$ in linear scale. To use it as a regular compressor/expander, multiply the result $g[n]$ with the signal $x[n]$.

Function signature

def compexp_gain(
    x_rms: torch.Tensor,
    comp_thresh: Union[torch.Tensor, float],
    comp_ratio: Union[torch.Tensor, float],
    exp_thresh: Union[torch.Tensor, float],
    exp_ratio: Union[torch.Tensor, float],
    at: Union[torch.Tensor, float],
    rt: Union[torch.Tensor, float],
) -> torch.Tensor:
    """Compressor-Expander gain function.

    Args:
        x_rms (torch.Tensor): Input signal RMS.
        comp_thresh (torch.Tensor): Compressor threshold in dB.
        comp_ratio (torch.Tensor): Compressor ratio.
        exp_thresh (torch.Tensor): Expander threshold in dB.
        exp_ratio (torch.Tensor): Expander ratio.
        at (torch.Tensor): Attack time.
        rt (torch.Tensor): Release time.

    Shape:
        - x_rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
        - comp_thresh: :math:`(B,)` or a scalar.
        - comp_ratio: :math:`(B,)` or a scalar.
        - exp_thresh: :math:`(B,)` or a scalar.
        - exp_ratio: :math:`(B,)` or a scalar.
        - at: :math:`(B,)` or a scalar.
        - rt: :math:`(B,)` or a scalar.

    """

Note: x_rms should be non-negative. You can calculate it using $\sqrt{x^2[n]}$ and smooth it with avg.

Equations

$$ x_{\rm log}[n] = 20 \log_{10} x_{\rm rms}[n] $$

$$ g_{\rm log}[n] = \min\left(0, \left(1 - \frac{1}{CR}\right)\left(CT - x_{\rm log}[n]\right), \left(1 - \frac{1}{ER}\right)\left(ET - x_{\rm log}[n]\right)\right) $$

$$ g[n] = 10^{g_{\rm log}[n] / 20} $$

$$ \hat{g}[n] = \begin{rcases} \begin{dcases} \alpha_{\rm at} g[n] + (1 - \alpha_{\rm at}) \hat{g}[n-1] & \text{if } g[n] < \hat{g}[n-1] \\ \alpha_{\rm rt} g[n] + (1 - \alpha_{\rm rt}) \hat{g}[n-1] & \text{otherwise} \end{dcases}\end{rcases} $$

Block diagram

graph TB
    input((x))
    output((g))
    amp2db[amp2db]
    db2amp[db2amp]
    min[Min]
    delay[z^-1]
    zero( 0 )

    input --> amp2db --> neg["*(-1)"] --> plusCT["+CT"] & plusET["+ET"]
    plusCT --> multCS["*(1 - 1/CR)"]
    plusET --> multES["*(1 - 1/ER)"]
    zero & multCS & multES --> min --> db2amp

    db2amp & delay --> ifelse{<}
    output --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"]

    subgraph Compressor
        ifelse -->|yes| multAT["*AT"]
        subgraph Attack
            multAT & multATT --> plus1(("+"))
        end

        ifelse -->|no| multRT["*RT"]
        subgraph Release
            multRT & multRTT --> plus2(("+"))
        end
    end

    plus1 & plus2 --> output

Limiter gain function

This function calculates the gain reduction $g[n]$ for a limiter. To use it as a regular limiter, multiply the result $g[n]$ with the input signal $x[n]$.

Function signature

def limiter_gain(
    x: torch.Tensor,
    threshold: torch.Tensor,
    at: torch.Tensor,
    rt: torch.Tensor,
) -> torch.Tensor:
    """Limiter gain function.
    This implementation use the same attack and release time for level detection and gain smoothing.

    Args:
        x (torch.Tensor): Input signal.
        threshold (torch.Tensor): Limiter threshold in dB.
        at (torch.Tensor): Attack time.
        rt (torch.Tensor): Release time.

    Shape:
        - x: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
        - threshold: :math:`(B,)` or a scalar.
        - at: :math:`(B,)` or a scalar.
        - rt: :math:`(B,)` or a scalar.

    """

Equations

$$ x_{\rm peak}[n] = \begin{rcases} \begin{dcases} \alpha_{\rm at} |x[n]| + (1 - \alpha_{\rm at}) x_{\rm peak}[n-1] & \text{if } |x[n]| > x_{\rm peak}[n-1] \\ \alpha_{\rm rt} |x[n]| + (1 - \alpha_{\rm rt}) x_{\rm peak}[n-1] & \text{otherwise} \end{dcases}\end{rcases} $$

$$ g[n] = \min(1, \frac{10^\frac{T}{20}}{x_{\rm peak}[n]}) $$

$$ \hat{g}[n] = \begin{rcases} \begin{dcases} \alpha_{\rm at} g[n] + (1 - \alpha_{\rm at}) \hat{g}[n-1] & \text{if } g[n] < \hat{g}[n-1] \\ \alpha_{\rm rt} g[n] + (1 - \alpha_{\rm rt}) \hat{g}[n-1] & \text{otherwise} \end{dcases}\end{rcases} $$

Block diagram

graph TB
    input((x))
    output((g))
    peak((x_peak))
    abs[abs]
    delay[z^-1]
    zero( 0 )

    ifelse1{>}
    ifelse2{<}

    input --> abs --> ifelse1

    subgraph Peak detector
        ifelse1 -->|yes| multAT["*AT"]
        subgraph at1 [Attack]
            multAT & multATT --> plus1(("+"))
        end

        ifelse1 -->|no| multRT["*RT"]
        subgraph rt1 [Release]
            multRT & multRTT --> plus2(("+"))
        end
    end
    
    plus1 & plus2 --> peak
    peak --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"] & ifelse1

    peak --> amp2db[amp2db] --> neg["*(-1)"] --> plusT["+T"]
    zero & plusT --> min[Min] --> db2amp[db2amp] --> ifelse2{<}

    subgraph gain smoothing
        ifelse2 -->|yes| multAT2["*AT"]
        subgraph at2 [Attack]
            multAT2 & multATT2 --> plus3(("+"))
        end

        ifelse2 -->|no| multRT2["*RT"]
        subgraph rt2 [Release]
            multRT2 & multRTT2 --> plus4(("+"))
        end
    end

    output --> delay2[z^-1] --> multATT2["*(1 - AT)"] & multRTT2["*(1 - RT)"] & ifelse2

    plus3 & plus4 --> output

Average filter

Function signature

def avg(rms: torch.Tensor, avg_coef: Union[torch.Tensor, float]):
    """Compute the running average of a signal.

    Args:
        rms (torch.Tensor): Input signal.
        avg_coef (torch.Tensor): Coefficient for the average RMS.

    Shape:
        - rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
        - avg_coef: :math:`(B,)` or a scalar.

    """

Equations

$$\hat{x}_{\rm rms}[n] = \alpha_{\rm avg} x_{\rm rms}[n] + (1 - \alpha_{\rm avg}) \hat{x}_{\rm rms}[n-1]$$

TODO

  • CUDA acceleration in Numba
  • PyTorch CPP extension
  • Native CUDA extension
  • Forward mode autograd
  • Examples

Citation

If you find this repository useful in your research, please cite our work with the following BibTex entry:

@misc{ycy2024diffapf,
    title={Differentiable All-pole Filters for Time-varying Audio Systems},
    author={Chin-Yun Yu and Christopher Mitcheltree and Alistair Carson and Stefan Bilbao and Joshua D. Reiss and György Fazekas},
    year={2024},
    eprint={2404.07970},
    archivePrefix={arXiv},
    primaryClass={eess.AS}
}

torchcomp's People

Contributors

yoyololicon avatar

Stargazers

Hammad Ali Khan avatar Tiago Freitas avatar xiaobai  avatar ds.kim avatar oucxlw avatar XiaohuaiLe-AALab avatar Mary avatar Glenn 'devalias' Grant avatar zsliu98 avatar  avatar Henry Ives avatar Volodymyr Kyrylov avatar Göran Sandström avatar 🥺 avatar Jarredou avatar Neil Lee avatar  avatar Emmanouil Theofanis Chourdakis avatar Iver Jordal avatar Yen Tung Yeh avatar Yi-Hsuan Yang avatar Eloi Moliner Juanpere avatar Hans Brouwer avatar Pifometricien avatar Jordie Shier avatar Constantinos Dimitriou avatar kuafu avatar David Südholt avatar ZR Han avatar Christian J. Steinmetz avatar Hao Hao Tan avatar Fabian-Robert Stöter avatar Sangeon Yong avatar  avatar Sofian Mejjoute avatar Jayeon Yi avatar

Watchers

 avatar

torchcomp's Issues

License?

Are you planning to add a license? I would like to integrate elements in dasp eventually.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.