Code Monkey home page Code Monkey logo

flipchem's Introduction

flipchem

https://travis-ci.com/amisr/flipchem.svg?branch=master Documentation Status

Overview

flipchem provides a python wrapper of the flipchem ionospheric photochemistry model developed by Phil Richards [Richards2011]. Specifically, this code wraps the version of flipchem that was used for [Richards2010]. The model requires NRLMSIS-00 neutral density and the f107, f107a, and AP geophysical parameters, so both of these have been packaged with flipchem. NRLMSIS-00 is provided by wrapping the C version of the code written by Dominik Brodowski, which is based on the original Fortran version of the model [Picone2002].

Use Case

The package is intended to be used for fitting Incoherent Scatter Radar (ISR) data, which involves fitting multiple gates of data at fixed time intervals. Also, the geophysical indicies are available with approximately daily time resolution. This is why the indicies are read when the Flipchem class is initialized and the get_point* functions do not accept date as an argument. The intended usage is:

  1. initialize the Flipchem class for one time interval
  2. call one of the get_point* functions for each of the range gates in the one time interval
  3. initialize a new Flipchem class for the next time interval
  4. goto 2

This facilitates usage of the multiprocessing library when processing ISR data, if each time interval is treated as a pool of asynchronous jobs.

Quick Start

Since this package is a wrapper around both C and Fortran source code, one must have a C and Fortran compiler installed and one must also install numpy before attempting installation. Numpy is used during installation of flipchem to compile the Fortran via f2py [Oliphant2006].

Then, installation of flipchem can be accomplished using pip:

pip install git+https://github.com/amisr/[email protected]

And to make a profile of ion densities, one can try this:

from datetime import datetime
import numpy as np
import flipchem
date = datetime(2017,1,4,18)
fc = flipchem.Flipchem(date)

glat = 74.72955
glon = -94.90576
alts = np.linspace(90,350,num=100)
nes = 5.0e11*np.exp(1-(alts-250)/70-np.exp(-(alts-250)/70))
tes = 2500*(1-np.exp(-(alts-90)/70))+300
tis = 1750*(1-np.exp(-(alts-90)/70))+300

Op = np.zeros((alts.shape))
O2p = np.zeros((alts.shape))
NOp = np.zeros((alts.shape))
N2p = np.zeros((alts.shape))
Np = np.zeros((alts.shape))
iters = np.zeros((alts.shape))

for i,(alt,ne,te,ti) in enumerate(zip(alts,nes,tes,tis)):
    outputs = fc.get_point(glat,glon,alt,ne,te,ti)
    Op[i] = outputs[3]
    O2p[i] = outputs[4]
    NOp[i] = outputs[5]
    N2p[i] = outputs[6]
    Np[i] = outputs[7]
    iters[i] = outputs[-1]

fig = pyplot.figure(figsize=(15,10))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.plot(nes,alts,'--',label='$N_e$',lw=4)
ax1.plot(Op,alts,label='$O^+$')
ax1.plot(O2p,alts,label='$O_2^+$')
ax1.plot(NOp,alts,label='$NO^+$')
ax1.plot(N2p,alts,label='$N_2^+$')
ax1.plot(Np,alts,label='$N^+$')
ax1.set_xscale('log')
ax1.set_xlim([1e9,1e12])
ax1.set_ylabel('Altitude (km)')
ax1.set_xlabel('Number Density (m$^{-3}$)')
l = ax1.legend()

ax2.plot(tes,alts,label='$T_e$')
ax2.plot(tis,alts,label='$T_i$')
ax2.set_xlabel('Temperature (K)')
l = ax2.legend()

Documentation

You can finde more detailed documentation, including installation guides for Windows 10, macOS, and Linux here: https://flipchem.readthedocs.io

References

[Oliphant2006]Oliphant, T. E. (2006). A guide to NumPy (Vol. 1). Trelgol Publishing USA.
[Picone2002]Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C. (2002). NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430.
[Richards2010]Richards, P. G., Bilitza, D., and Voglozin, D. (2010), Ion density calculator (IDC): A new efficient model of ionospheric ion densities, Radio Sci., 45, RS5007, doi:10.1029/2009RS004332.
[Richards2011]Richards, P. G. (2011). Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi:10.1029/2011JA016613.

flipchem's People

Contributors

asreimer avatar amisr-user avatar fguenzkofer avatar yonghuier avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.