Code Monkey home page Code Monkey logo

backdoorbox's Introduction

BackdoorBox: An Open-sourced Python Toolbox for Backdoor Attacks and Defenses

Python 3.8 Pytorch 1.8.0 torchvision 0.9.0 CUDA 11.1 License GPL

Backdoor attacks are emerging yet critical threats in the training process of deep neural networks (DNNs), where the adversary intends to embed specific hidden backdoor into the models. The attacked DNNs will behave normally in predicting benign samples, whereas the predictions will be maliciously changed whenever the adversary-specified trigger patterns appear. Currently, there were many existing backdoor attacks and defenses. Although most of them were open-sourced, there is still no toolbox that can easily and flexibly implement and compare them simultaneously.

BackdoorBox is an open-sourced Python toolbox, aiming to implement representative and advanced backdoor attacks and defenses under a unified framework that can be used in a flexible manner. We will keep updating this toolbox to track the latest backdoor attacks and defenses.

Currently, this toolbox is still under development (but the attack parts are almost done) and there is no user manual yet. However, users can easily implement our provided methods by referring to the tests sub-folder to see the example codes of each implemented method. In particular, you are always welcome to contribute your backdoor attacks or defenses by pull requests!

Toolbox Characteristics

  • Consistency: Instead of implementing each method separately, we develop all methods in a unified manner. Specifically, variables having the same function have a consistent name. Similar methods inherit the same base class for further development, have a unified workflow, and have the same core sub-functions (e.g., get_model()).
  • Simplicity: We provide code examples for each implemented backdoor attack and defense to explain how to use them, the definitions and default settings of all required attributes, and the necessary code comments. Users can easily implement and develop our toolbox.
  • Flexibility: We allow users to easily obtain important intermediate outputs and components of each method (e.g., poisoned dataset and attacked/repaired model), use their local samples and model structure for attacks and defenses, and interact with their local codes. The attack and defense modules can be used jointly or separately.
  • Co-development: All codes and developments are hosted on Github to facilitate collaboration. Currently, there are more than seven contributors have helped develop the code base and others have contributed to the code test. This developing paradigm facilitates rapid and comprehensive development and bug finding.

Backdoor Attacks

Method Source Key Properties Additional Notes
BadNets Badnets: Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access, 2019. poison-only first backdoor attack
Blended Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv, 2017. poison-only, invisible first invisible attack
Refool (simplified version) Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks. ECCV, 2020. poison-only, sample-specific first stealthy attack with visible yet natural trigger
LabelConsistent Label-Consistent Backdoor Attacks. arXiv, 2019. poison-only, invisible, clean-label first clean-label backdoor attack
TUAP Clean-Label Backdoor Attacks on Video Recognition Models. CVPR, 2020. poison-only, invisible, clean-label first clean-label backdoor attack with optimized trigger pattern
SleeperAgent Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch. arXiv, 2021. poison-only, invisible, clean-label effective clean-label backdoor attack
ISSBA Invisible Backdoor Attack with Sample-Specific Triggers. ICCV, 2021. poison-only, sample-specific, physical first poison-only sample-specific attack
WaNet WaNet - Imperceptible Warping-based Backdoor Attack. ICLR, 2021. poison-only, invisible, sample-specific
Blind (blended-based) Blind Backdoors in Deep Learning Models. USENIX Security, 2021. training-controlled first training-controlled attack targeting loss computation
IAD Input-Aware Dynamic Backdoor Attack. NeurIPS, 2020. training-controlled, optimized, sample-specific first training-controlled sample-specific attack
PhysicalBA Backdoor Attack in the Physical World. ICLR Workshop, 2021. training-controlled, physical first physical backdoor attack
LIRA LIRA: Learnable, Imperceptible and Robust Backdoor Attacks. ICCV, 2021. training-controlled, invisible, optimized, sample-specific

Note: For the convenience of users, all our implemented attacks support obtaining poisoned dataset (via .get_poisoned_dataset()), obtaining infected model (via .get_model()), and training with your own local samples (loaded via torchvision.datasets.DatasetFolder). Please refer to base.py and the attack's codes for more details.

Backdoor Defenses

Method Source Defense Type Additional Notes
AutoEncoderDefense Neural Trojans. ICCD, 2017. Sample Pre-processing first pre-processing-based defense
ShrinkPad Backdoor Attack in the Physical World. ICLR Workshop, 2021. Sample Pre-processing efficient defense
FineTuning Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. RAID, 2018. Model Repairing first defense based on model repairing
Pruning Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. RAID, 2018. Model Repairing
MCR Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness. ICLR, 2020. Model Repairing
NAD Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks. ICLR, 2021. Model Repairing first distillation-based defense
ABL Anti-Backdoor Learning: Training Clean Models on Poisoned Data. NeurIPS, 2021. Poison Suppression

Methods Under Development

  • DBD
  • SS
  • Neural Cleanse
  • DP
  • CutMix

Attack & Defense Benchmark

The benchmark is coming soon.

Contributors

Organization Contributors
Tsinghua University Yiming Li, Mengxi Ya, Guanhao Gan, Kuofeng Gao, Xin Yan, Jia Xu, Tong Xu, Sheng Yang, Haoxiang Zhong, Linghui Zhu
Tencent Security Zhuque Lab Yang Bai

Citation

If our toolbox is useful for your research, please cite our paper(s) as follows:

@article{li2022backdoorbox,
  title={{BackdoorBox}: A Python Toolbox for Backdoor Learning},
  author={Li, Yiming and Ya, Mengxi and Bai, Yang and Jiang, Yong and Xia, Shu-Tao},
  year={2022}
}
@article{li2022backdoor,
  title={Backdoor learning: A survey},
  author={Li, Yiming and Jiang, Yong and Li, Zhifeng and Xia, Shu-Tao},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2022}
}

backdoorbox's People

Contributors

20000yshust avatar chengxiao-luo avatar cyndixxxxx avatar doris1007 avatar guanhaogan avatar hxzhong1997 avatar kuofenggao avatar thuyimingli avatar uooga avatar yamengxi avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.