Code Monkey home page Code Monkey logo

bundle-adjusting-nerf's Introduction

BARF 🤮: Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey
IEEE International Conference on Computer Vision (ICCV), 2021 (oral presentation)

Project page: https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF
arXiv preprint: https://arxiv.org/abs/2104.06405

We provide PyTorch code for the NeRF experiments on both synthetic (Blender) and real-world (LLFF) datasets.


Prerequisites

This code is developed with Python3 (python3). PyTorch 1.9+ is required.
It is recommended use Anaconda to set up the environment. Install the dependencies and activate the environment barf-env with

conda env create --file requirements.yaml python=3
conda activate barf-env

Initialize the external submodule dependencies with

git submodule update --init --recursive

Dataset

  • Synthetic data (Blender) and real-world data (LLFF)

    Both the Blender synthetic data and LLFF real-world data can be found in the NeRF Google Drive. For convenience, you can download them with the following script: (under this repo)
    # Blender
    gdown --id 18JxhpWD-4ZmuFKLzKlAw-w5PpzZxXOcG # download nerf_synthetic.zip
    unzip nerf_synthetic.zip
    rm -f nerf_synthetic.zip
    mv nerf_synthetic data/blender
    # LLFF
    gdown --id 16VnMcF1KJYxN9QId6TClMsZRahHNMW5g # download nerf_llff_data.zip
    unzip nerf_llff_data.zip
    rm -f nerf_llff_data.zip
    mv nerf_llff_data data/llff
    The data directory should contain the subdirectories blender and llff. If you already have the datasets downloaded, you can alternatively soft-link them within the data directory.
  • iPhone (TODO)


Running the code

  • BARF models

    To train and evaluate BARF:

    # <GROUP> and <NAME> can be set to your likes, while <SCENE> is specific to datasets
    
    # Blender (<SCENE>={chair,drums,ficus,hotdog,lego,materials,mic,ship})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF (<SCENE>={fern,flower,fortress,horns,leaves,orchids,room,trex})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --resume

    All the results will be stored in the directory output/<GROUP>/<NAME>. You may want to organize your experiments by grouping different runs in the same group.

    To train baseline models:

    • Full positional encoding: omit the --barf_c2f argument.
    • No positional encoding: add --arch.posenc!.

    If you want to evaluate a checkpoint at a specific iteration number, use --resume=<ITER_NUMBER> instead of just --resume.

  • Training the original NeRF

    If you want to train the reference NeRF models (assuming known camera poses):

    # Blender
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE> --resume

    If you wish to replicate the results from the original NeRF paper, use --yaml=nerf_blender_repr or --yaml=nerf_llff_repr instead for Blender or LLFF respectively. There are some differences, e.g. NDC will be used for the LLFF forward-facing dataset. (The reference NeRF models considered in the paper do not use NDC to parametrize the 3D points.)

  • Visualizing the results

    We have included code to visualize the training over TensorBoard and Visdom. The TensorBoard events include the following:

    • SCALARS: the rendering losses and PSNR over the course of optimization. For BARF, the rotational/translational errors with respect to the given poses are also computed.
    • IMAGES: visualization of the RGB images and the RGB/depth rendering.

    We also provide visualization of 3D camera poses in Visdom. Run visdom -port 9000 to start the Visdom server.
    The Visdom host server is default to localhost; this can be overridden with --visdom.server (see options/base.yaml for details). If you want to disable Visdom visualization, add --visdom!.


Codebase structure

The main engine and network architecture in model/barf.py inherit those from model/nerf.py. This codebase is structured so that it is easy to understand the actual parts BARF is extending from NeRF. It is also simple to build your exciting applications upon either BARF or NeRF -- just inherit them again! This is the same for dataset files (e.g. data/blender.py).

To understand the config and command lines, take the below command as an example:

python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]

This will run model/barf.py as the main engine with options/barf_blender.yaml as the main config file. Note that barf hierarchically inherits nerf (which inherits base), making the codebase customizable.
The complete configuration will be printed upon execution. To override specific options, add --<key>=value or --<key1>.<key2>=value (and so on) to the command line. The configuration will be loaded as the variable opt throughout the codebase.

Some tips on using and understanding the codebase:

  • The computation graph for forward/backprop is stored in var throughout the codebase.
  • The losses are stored in loss. To add a new loss function, just implement it in compute_loss() and add its weight to opt.loss_weight.<name>. It will automatically be added to the overall loss and logged to Tensorboard.
  • If you are using a multi-GPU machine, you can add --gpu=<gpu_number> to specify which GPU to use. Multi-GPU training/evaluation is currently not supported.
  • To resume from a previous checkpoint, add --resume=<ITER_NUMBER>, or just --resume to resume from the latest checkpoint.
  • (to be continued....)

If you find our code useful for your research, please cite

@inproceedings{lin2021barf,
  title={BARF: Bundle-Adjusting Neural Radiance Fields},
  author={Lin, Chen-Hsuan and Ma, Wei-Chiu and Torralba, Antonio and Lucey, Simon},
  booktitle={IEEE International Conference on Computer Vision ({ICCV})},
  year={2021}
}

Please contact me ([email protected]) if you have any questions!

bundle-adjusting-nerf's People

Contributors

chenhsuanlin avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.