Code Monkey home page Code Monkey logo

c-jwt-cracker's Introduction

JWT cracker

A multi-threaded JWT brute-force cracker written in C. If you are very lucky or have a huge computing power, this program should find the secret key of a JWT token, allowing you to forge valid tokens. This is for testing purposes only, do not put yourself in trouble :)

I used the Apple Base64 implementation that I modified slightly.

Build a Docker Image

docker build . -t jwtcrack

Run on Docker

docker run -it --rm  jwtcrack eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.cAOIAifu3fykvhkHpbuhbvtH807-Z2rI1FS3vX1XMjE

Manual Compilation

Make sure you have openssl's headers installed. On Ubuntu you can install them with apt-get install libssl-dev

make

If you use a Mac, you can install OpenSSL with brew install openssl, but the headers will be stored in a different location:

make OPENSSL=/usr/local/opt/openssl/include OPENSSL_LIB=-L/usr/local/opt/openssl/lib

Run

$ > ./jwtcrack eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.cAOIAifu3fykvhkHpbuhbvtH807-Z2rI1FS3vX1XMjE

Run with different HMAC functions

The following hash functions are supported for HMAC, i.e. to generate keyed-hashed message authentication codes: "sha256" for JSON HS256 (HMAC using SHA-256), "sha384" for HS384 and "sha512" for HS512, respectively. You can specify the name of any other hash function exactly as it is named in the OpenSSL. If OpenSSL allows this hash function to be used for HMAC, then jwtcrack will try to decode the secret. However, since jwtcrack is only a decoder, there is no guarantee that this algorithm was actually used for encoding, let alone among the list of algorithms allowed for the "JSON Web Algorithms" RFC. See section 3.1. of the RFC 7518 for more details.

In the following example, we use a sha256 hash function that corresponds to JSON HS256 (HMAC-SHA256), see the "sha256" as a last command line parameter. Also, in this example we specify maximum secret length of 5 characters, and limit the alphabet to the following characters: ABCSNFabcsnf1234

$ > ./jwtcrack eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.cAOIAifu3fykvhkHpbuhbvtH807-Z2rI1FS3vX1XMjE ABCSNFabcsnf1234 5 sha256

In the above example, the key is Sn1f, and it takes less than a second on an average notebook manufactured around 2019 (e.g. with an Intel CPU based on Ice Lake microarchitecture). GCC version 9.3.0 with "-O3" was used to compile the jwtcrack program. It was linked with the OpenSSL library version 1.1.1f under Linux Ubuntu 20.04.1 LTS.

Here, in the next example, we use "sha512" as a last command line parameter to specify HS512 (HMAC-SHA512), we also specify maximum secret length of 9 characters, and limit the alphabet to the following seven lowercase latin characters: "adimnps".

$ > ./jwtcrack eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9.eyJyb2xlIjoiYWRtaW4ifQ.RnWtv7Rjggm8LdMU3yLnz4ejgGAkIxoZwsCMuJlHMwTh7CJODDZWR8sVuNvo2ws25cbH9HWcp2n5WxpIZ9_v0g adimnps 9 sha512

In the above example, the key is adminpass, and it takes about 15 seconds on average to decode on a notebook with Intel Core i7 1065G7 CPU on Ice Lake microarchitecture (2019), base frequency 1.30 GHz, max turbo 3.90 GHz). The combined number of CPU seconds consumed from each of the cores in the user mode due to multithreading is about 100 on average to decode that secret.

Example of using "sha384":

$ > ./jwtcrack eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzM4NCJ9.eyJyb2xlIjoiYWRtaW4ifQ.31xCH3k8VRqB8l5qBy7RyqI2htyCskBy_4cIWpk3o43UkIMW-IcjTUEL_NyFXUWJ 0123456789 6 sha384

Measurement of time consumed by jwtcrack

/usr/bin/time -f "Total number of CPU-seconds consumed directly from each of the CPU cores: %U\nElapsed real wall clock time used by the process: %E" ./jwtcrack eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9.eyJyb2xlIjoiYWRtaW4ifQ.RnWtv7Rjggm8LdMU3yLnz4ejgGAkIxoZwsCMuJlHMwTh7CJODDZWR8sVuNvo2ws25cbH9HWcp2n5WxpIZ9_v0g adimnps 9 sha512

Contribute

  • No progress status
  • If you stop the program, you cannot start back where you were

IMPORTANT: Known bugs

The base64 implementation I use (from Apple) is sometimes buggy because not every Base64 implementation is the same. So sometimes, decrypting of your Base64 token will only work partially and thus you will be able to find a secret to your token that is not the correct one.

If someone is willing to implement a more robust Base64 implementation, that would be great :)

c-jwt-cracker's People

Contributors

brendan-rius avatar dszczyt avatar mvmendes avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.