Code Monkey home page Code Monkey logo

anomalyzer's Introduction

Anomalyzer

Build Status GoDoc

Probabilistic anomaly detection in Go.

Windows

Inspired by Etsy's Skyline package, Anomalyzer implements a suite of statistical tests that yield the probability that a given set of numeric input, typically a time series, contains anomalous behavior. Each test compares the behavior in an active window of one or more points to the behavior in a reference window of two or more points.

Specifying a number of seasons will yield a reference window length equal to that factor times the length of the active window specified. For example, an input vector of [1, 2, 3, 4, 5, 6, 7, 8, 9], and an active window length of 1 with number of seasons equal to 4, would yield an active window of [9] and a reference window of [5, 6, 7, 8].

Algorithms

Anomalyzer can implement one or more of the following algorithmic tests:

  1. cdf: Compares the differences in the behavior in the active window to the cumulative distribution function of the reference window.
  2. diff: Performs a bootstrap permutation test on the ranks of the differences in both windows, in the flavor of a Wilcoxon rank-sum test.
  3. high rank: Performs a bootstrap permutation test on the ranks of the entries themselves in both windows. Counts how many times the permuted rank-sum is less than the original rank-sum, sensitive to increasing behavior.
  4. low rank: Similarly, counts how many times the permuted rank-sum is greater than the original rank-sum, sensitive to decreasing behavior.
  5. magnitude: Compares the relative magnitude of the difference between the averages of the active and the reference windows.
  6. fence: Indicates that data are approaching a configurable upper and lower bound.
  7. bootstrap ks: Calculates the Kolmogorov-Smirnov test over active and reference windows and compares that value to KS test scores obtained after permuting all elements in the set.

Each test yields a probability of anomalous behavior, and the probabilities are then computed over a weighted mean to determine if the overall behavior is anomalous. Since a probability is returned, the user may determine the sensitivity of the decision, and can determine the threshold for anomalous behavior for the application, whether at say 0.8 for general anomalous behavior or 0.95 for extreme anomalous behavior.

Configuration

Any of the tests can be included in the anomalyzer, and if none are supplied in the configuration, default to magnitude and cdf. Methods are supplied through the Methods value in the configuration and accepts a slice of strings for the method names.

A value for ActiveSizeis required and must be a minimum of 1. The NSeasons will default to 4 if not specified.

Magnitude

If the magnitude test is specified, a Sensitivity (between 0 and 1) can be supplied such that when the result of the magnitude test is less than that value, the weighted mean will return 0. If Sensitivity is not specified, it defaults to 0.1.

Bootstrap KS

To capture seasonality, the bootstrap ks test should consider an active window length equal to a season.

Fence

The fence test can be configured to use custom UpperBound and LowerBound values for the fences. If no lower bound is desired, set the value of LowerBound to anomalyzer.NA.

Diff & Rank

The diff, bootstrap ks, and rank tests can accept a value for the number of bootstrap samples to generate, indicated by PermCount, and defaults to 500 if not set.

Example

package main

import (
	"fmt"
	"github.com/lytics/anomalyzer"
)

func main() {
	conf := &anomalyzer.AnomalyzerConf{
		Sensitivity: 0.1,
		UpperBound:  5,
		LowerBound:  anomalyzer.NA, // ignore the lower bound
		ActiveSize:  1,
		NSeasons:    4,
		Methods:     []string{"diff", "fence", "highrank", "lowrank", "magnitude"},
	}

	// initialize with empty data or an actual slice of floats
	data := []float64{0.1, 2.05, 1.5, 2.5, 2.6, 2.55}

	anom, _ := anomalyzer.NewAnomalyzer(conf, data)

	// the push method automatically triggers a recalcuation of the
	// anomaly probability.  The recalculation can also be triggered
	// by a call to the Eval method.
	prob := anom.Push(8.0)
	fmt.Println("Anomalous Probability:", prob)
}

anomalyzer's People

Contributors

allisonmorgan avatar drewlanenga avatar schmichael avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.