Code Monkey home page Code Monkey logo

bike-riding-analysis's Introduction

Map views

Using data from the data processing step (https://github.com/sztelzer/Bike-Riding-Analysis/blob/master/Data%20Processing.md), we can now test various plot types of the data.

import pickle as pk
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from matplotlib.collections import LineCollection

def save_data(data, name):
    cache = open(name+".pkl", 'wb')
    pk.dump(data, cache)
    cache.close()
    
def load_data(name):
    cache = open(name+".pkl", 'rb')
    data = pk.load(cache)
    cache.close()
    return data

Reduction functions

def reducetime(data, N=10):
    data = data.groupby(['rider', 'ride']).apply(timereducer, N)
    return data
    
def timereducer(ride, N):
    breaks = np.arange(N-1, len(ride), N)
    groups = np.split(ride, breaks)
    vectors = pd.concat(list(map(firsttolast, groups)))
    return vectors

def firsttolast(ride):
    vector = ride.head(1)
    tail = vector.tail(1)
    vector.flon = tail.flon
    vector.flat = tail.flat
    vector.felev = tail.felev
    vector.ftime = tail.ftime
    vector.dist = haversine(vector.ilon, vector.ilat, vector.flon, vector.flat)
    vector.heading = np.arctan2(vector.flon-vector.ilon, vector.flat-vector.ilat) * 180 / np.pi
    return vector
    
def reducespace(rides, R):
    rides['glon'] = np.around(rides.ilon, R)
    rides['glat'] = np.around(rides.ilat, R)
    rides['gdir'] = (rides.heading/90).astype(np.int)*90
    vectors = rides.groupby(['gdir', 'glon', 'glat']).mean()
    return vectors

def haversine(lon1, lat1, lon2, lat2):
    lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
    a = np.sin((lat2-lat1)/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin((lon2-lon1)/2.0)**2
    return 6372800 * 2 * np.arcsin(np.sqrt(a))

def clearvectors(vecs):
    return vecs
cachefile = open("grouped.pkl", 'rb')
data = pk.load(cachefile)
cachefile.close()

data = data[data.ilat > -23.63] #east boundary
data = data[data.ilat < -23.50] #west boundary
data = data[data.ilon > -46.76] #north boundary
data = data[data.ilon < -46.60] #south boundary
minidata = data.loc[0].loc[1]
print(minidata.shape)

microdata = reducetime(minidata)
print(microdata.shape)

# nanodata = reducespace(microdata, 4)
# print(nanodata.shape)

plt.figure(figsize=(30,10))
plt.subplot(131).quiver(minidata.ilon, minidata.ilat, minidata.flon-minidata.ilon, minidata.flat-minidata.ilat, color=rgba, units='xy', angles='xy', scale=1, pivot='tail')
plt.axis('equal')
plt.axis('off')
plt.subplot(132).quiver(microdata.ilon, microdata.ilat, microdata.flon-microdata.ilon, microdata.flat-microdata.ilat, color=rgba, units='xy', angles='xy', scale=1, pivot='tail')
plt.axis('equal')
plt.axis('off')
# plt.subplot(133).quiver(nanodata.ilon, nanodata.ilat, nanodata.flon-nanodata.ilon, nanodata.flat-nanodata.ilat, color=rgba, units='xy', angles='xy', scale=1, pivot='tail')
# plt.axis('equal')
# plt.axis('off')


plt.show()
(11533, 16)
(1154, 16)

png

Quiver, Scatter and Line Collection.

Quiver plots an arrows field, but should use simplifications to have less vectors. Scatter plots are easy, disconnected, but also just points. Line Collection are the best, but a little more complicated.

n = 200
c = data.loc[0].loc[0].head(n)
c = c.append(data.loc[0].loc[0].tail(n))
c = c.append(data.loc[0].loc[1].head(n//2))
c = c.append(data.loc[0].loc[1].tail(n))
c = c.append(data.loc[0].loc[2].head(n))
c = c.append(data.loc[0].loc[2].tail(n))
c = c.append(data.loc[0].loc[4].head(n//2))
c = c.append(data.loc[0].loc[4].tail(n))
norm = colors.Normalize()
cmap = plt.cm.get_cmap('jet')
rgba = cmap(norm(c.dist))

plt.figure(figsize=(20,20))
plt.subplot(221).quiver(c.ilon, c.ilat, c.flon-c.ilon, c.flat-c.ilat, color=rgba, units='xy', angles='xy', scale=1, pivot='tail')
plt.axis('equal')
plt.axis('off')

plt.subplot(222).scatter(c.ilon, c.ilat, color=rgba, s=0.2)
plt.axis('equal')
plt.axis('off')
plt.show()

png

N = 20
c['distmean'] = np.convolve(c.dist, np.ones((N,))/N, mode='same')

c = data
# groups = c[['ilon', 'ilat']].groupby([c.rider, c.ride], as_index=False, squeeze=True)
# xy = list(groups)
# x = []
# for a in range(len(xy)):
#     x.append(np.array(xy[a][1]))

x = list(zip(zip(c.ilon, c.ilat), zip(c.flon, c.flat)))
print(len(x))

g, ax = plt.subplots(figsize=(60,60))
collection = LineCollection(x, linewidth=1, alpha=0.5)
collection.set_array(norm(c.distmean))

ax.add_collection(collection)
ax.autoscale_view()
ax.axis('equal')
plt.axis('off')
plt.show()
3519833

png

Scaling to directions vectors

Group all data in one region/direction to a single vector.

  1. Sum N sequential points to one vector.
  2. Average the vectors in the same field region with the same direction.
s = data
print(s.shape)
s = reduceTime(s, 100)
print(s.shape)
s = reduceSpace(s)
print(s.shape)
s = clearVectors(s)
print(s.shape)
(3519833, 16)
(35199, 16)
(285, 16)
(285, 16)
s['distmean'] = np.convolve(s.dist, np.ones((N,))/N, mode='same')
g, ax = plt.subplots(figsize=(20,20))
u = (s.flon-s.ilon)/s.dist
v = (s.flat-s.ilat)/s.dist
mov = 0.00025
x = s.ilon + (np.cos(np.arctan2(u, v)) * mov)
y = s.ilat + (-np.sin(np.arctan2(u, v)) * mov)
plt.quiver(x, y, u, v, color=cmap(norm(s.distmean)), scale=0.001, pivot='mid')
plt.scatter(s.ilon, s.ilat, s=1, color="black", alpha=1)
ax.autoscale_view()
ax.axis('equal')
plt.axis('off')
plt.show()

png

bike-riding-analysis's People

Contributors

sztelzer avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.