Code Monkey home page Code Monkey logo

compdata.hs's Introduction

Compositional Data Types Build Status

This library implements the ideas of Data types a la carte (Wouter Swiestra, Journal of Functional Programming, 18(4):423-436, 2008) as outlined in the paper Compositional data types (Patrick Bahr and Tom Hvitved, Workshop on Generic Programming, 83-94, 2011). The purpose of this library is to allow the programmer to construct data types -- as well as the functions defined on them -- in a modular fashion. The underlying idea is to separate the signature of a data type from the fixed point construction that produces its recursive structure. Signatures can then be composed and decomposed freely.

Building on that foundation, this library provides additional extensions and (run-time) optimisations which make compositional data types usable for practical implementations. In particular, it provides an excellent framework for manipulating and analysing abstract syntax trees in a type-safe manner. Thus, it is perfectly suited for programming language implementations, especially, in an environment consisting of a family of tightly interwoven domain-specific languages.

In concrete terms, this library provides the following features:

  • Compositional data types in the style of Wouter Swierstra's Functional Pearl Data types a la carte. The implementation of signature subsumption is based on the paper Composing and Decomposing Data Types (Workshop on Generic Programming, 2014, to appear), which makes signature composition more flexible.
  • Modular definition of functions on compositional data types through catamorphisms and anamorphisms as well as more structured recursion schemes such as primitive recursion and co-recursion, and course-of-value iteration and co-iteration.
  • Support for monadic computations via monadic variants of all recursion schemes.
  • Support of a succinct programming style over compositional data types via generic programming combinators that allow various forms of generic transformations and generic queries.
  • Generalisation of compositional data types (terms) to compositional data types "with holes" (contexts). This allows flexible reuse of a wide variety of catamorphisms (called term homomorphisms) as well as an efficient composition of them.
  • Operations on signatures, for example, to add and remove annotations of abstract syntax trees. This includes combinators to propagate annotations fully automatically through certain term homomorphisms.
  • Optimisation of the implementation of recursion schemes. This includes short-cut fusion style optimisation rules which yield a performance boost of up to factor six.
  • Automatic derivation of instances of all relevant type classes for using compositional data types via Template Haskell. This includes instances of Prelude.Eq, Prelude.Ord and Prelude.Show that are derived via instances for functorial variants of them. Additionally, also smart constructors, which allow to easily construct inhabitants of compositional data types, are automatically generated.
  • Mutually recursive data types and generalised algebraic data types (GADTs). All of the above is also lifted to families of mutually recursive data types and (more generally) GADTs. This extension resides in the module Data.Comp.Multi.

Examples of using (generalised) compositional data types are bundled with the package in the folder examples.

There are some supplementary packages, some of which were included in previous versions of this package:

  • compdata-param: a parametric variant of compositional data types to deal with variable binders in a systematic way.
  • compdata-automata: advanced recursion schemes derived from tree automata that allow for a higher degree of modularity and make it possible to apply fusion.
  • compdata-dags: recursion schemes on directed acyclic graphs.

compdata.hs's People

Contributors

pa-ba avatar strake avatar emilaxelsson avatar tomberek avatar gasche avatar kiripon avatar

Watchers

James Cloos avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.