Code Monkey home page Code Monkey logo

linear_algebra_with_python's Introduction

Lectures of Linear Algebra MIT License

These lecture notes are intended for introductory linear algebra courses, suitable for university students, programmers, data analysts, algorithmic traders and etc.

The lectures notes are loosely based on several textbooks:

  1. Linear Algebra and Its Applications by Gilbert Strang
  2. Linear Algebra and Its Applications by David Lay
  3. Introduction to Linear Algebra With Applications by DeFranza & Gagliardi
  4. Linear Algebra With Applications by Gareth Williams

cover-min

However, the crux of the course is not about proving theorems, but to demonstrate the practice and visualize the concepts. Thus we will not engage in strictly precise deduction or notation, rather we aim to clarify the elusive concepts and thanks to Python/MATLAB, the task is much easier now.

Prerequisites

Though the lectures are for beginners, it is beneficial that attendants had certain amount of exposure to a little linear algebra and calculus before.

And also the attendants are expected to have basic knowledge (3 days training would be enough) of

  • Python
  • NumPy
  • Matplotlib
  • SymPy

All the codes are written in an intuitive manner rather than efficient or professional coding style, therefore the codes are exceedingly straightforward, I presume barely anyone would have difficulty in following the codes.

Contents

It is advisable to either open the notebooks in Jupyter nbviewers (links below) or download them, since github has lots of rendering mistakes in LaTeX and sometimes even missing plots.

Lecture 1 - System of Linear Equations
Lecture 2 - Basic Matrix Algebra
Lecture 3 - Determinants
Lecture 4 - LU Decomposition
Lecture 5 - Vector Operations
Lecture 6 - Linear Combination
Lecture 7 - Linear Independence
Lecture 8 - Vector Space and Subspace
Lecture 9 - Basis and Dimension
Lecture 10 - Column, Row and Null Sapce
Lecture 11 - Linear Transformation
Lecture 12 - Eigenvalues and Eigenvectors
Lecture 13 - Diagonalization
Lecture 14 - Application to Dynamic System
Lecture 15 - Inner Product and Orthogonality
Lecture 16 - Gram-Schmidt Process and Decomposition
Lecture 17 - Symmetric Matrices and Quadratic Form
Lecture 18 - Singular Value Decomposition
Lecture 19 - Multivariate Normal Distribution

linear_algebra_with_python's People

Contributors

weijie-chen avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.