Code Monkey home page Code Monkey logo

ex-3--aai's Introduction

NAME: Shaik Shoaib Nawaz

REGISTER NO:212222240094

EX. NO.3

DATE:

Implementation of Approximate Inference in Bayesian Networks

Aim:

To construct a python program to implement approximate inference using Gibbs Sampling.

Algorithm:

Step 1: Bayesian Network Definition and CPDs:

  • Define the Bayesian network structure using the BayesianNetwork class from pgmpy.models.
  • Define Conditional Probability Distributions (CPDs) for each variable using the TabularCPD class.
  • Add the CPDs to the network.
Step 2: Printing Bayesian Network Structure:
  • Print the structure of the Bayesian network using the print(network) statement.
Step 3: Graph Visualization:
  • Import the necessary libraries (networkx and matplotlib).
  • Create a directed graph using networkx.DiGraph().
  • Define the nodes and edges of the graph.
  • Add nodes and edges to the graph.
  • Optionally, define positions for the nodes.
  • Use nx.draw() to visualize the graph using matplotlib.
Step 4: Gibbs Sampling and MCMC:
  • Initialize Gibbs Sampling for MCMC using the GibbsSampling class and provide the Bayesian network.
  • Set the number of samples to be generated using num_samples.
Step 5: Perform MCMC Sampling:
  • Use the sample() method of the GibbsSampling instance to perform MCMC sampling.
  • Store the generated samples in the samples variable.
Step 6: Approximate Probability Calculation:
  • Specify the variable for which you want to calculate the approximate probabilities (query_variable).
  • Use .value_counts(normalize=True) on the samples of the query_variable to calculate approximate probabilities.
Step 7:Print Approximate Probabilities:
  • Print the calculated approximate probabilities for the specified query_variable.

Program:

from pgmpy.models import BayesianNetwork
from pgmpy.factors.discrete import TabularCPD
from pgmpy.sampling import GibbsSampling
import networkx as nx
import matplotlib.pyplot as plt
alarm_model = BayesianNetwork(
    [
        ("Burglary", "Alarm"),
        ("Earthquake", "Alarm"),
        ("Alarm", "JohnCalls"),
        ("Alarm", "MaryCalls"),
    ]
)

# Defining the parameters using CPT
from pgmpy.factors.discrete import TabularCPD

cpd_burglary = TabularCPD(
    variable="Burglary", variable_card=2, values=[[0.999], [0.001]]
)
cpd_earthquake = TabularCPD(
    variable="Earthquake", variable_card=2, values=[[0.998], [0.002]]
)
cpd_alarm = TabularCPD(
    variable="Alarm",
    variable_card=2,
    values=[[0.999, 0.71, 0.06, 0.05], [0.001, 0.29, 0.94, 0.95]],
    evidence=["Burglary", "Earthquake"],
    evidence_card=[2, 2],
)
cpd_johncalls = TabularCPD(
    variable="JohnCalls",
    variable_card=2,
    values=[[0.95, 0.1], [0.05, 0.9]],
    evidence=["Alarm"],
    evidence_card=[2],
)
cpd_marycalls = TabularCPD(
    variable="MaryCalls",
    variable_card=2,
    values=[[0.1, 0.7], [0.9, 0.3]],
    evidence=["Alarm"],
    evidence_card=[2],
)

# Associating the parameters with the model structure
alarm_model.add_cpds(
    cpd_burglary, cpd_earthquake, cpd_alarm, cpd_johncalls, cpd_marycalls
)
print("Bayesian Network Structure")
print(alarm_model)
G=nx.DiGraph()
nodes=['Burglary','Earthquake','JohnCalls','MaryCalls']
edges=[('Burglary','Alarm'),('Earthquake','Alarm'),('Alarm','JohnCalls'),('Alarm','MaryCalls')]
G.add_nodes_from(nodes)
G.add_edges_from(edges)
pos={
    'Burglary':(0,0),
    'Earthquake':(2,0),
    'Alarm':(1,-2),
    'JohnCalls':(0,-4),
    'MaryCalls':(2,-4)
    }
nx.draw(G,pos,with_labels=True,node_size=1500,node_color="skyblue",font_size=10,font_weight="bold",arrowsize=20)
plt.title("Bayesian Network: Burglar Alarm Problem")
plt.show()
gibbssampler=GibbsSampling(alarm_model)
num_samples=10000
samples=gibbssampler.sample(size=num_samples)
query_variable="Burglary"
query_result=samples[query_variable].value_counts(normalize=True)
print("\n Approximate probabilities of {}:".format(query_variable))
print(query_result)

Output:

i.)

image

ii.)

image

iii.)

image

Result:

Thus, Gibb's Sampling( Approximate Inference method) is succuessfully implemented using python.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.