Code Monkey home page Code Monkey logo

glslcc's Introduction

glslcc: Cross-compiler for GLSL shader language (GLSL->HLSL,METAL,GLES,GLSLv3)

@septag

glslcc is a command line tool that converts GLSL code to HLSL, GLES (version 2.0 and 3.0), Metal (MSL) and also other GLSL versions (GLSL 330, GLSL 400, etc..).
It uses glslang for parsing GLSL and compiling SPIR-V. And SPIRV-cross for converting the code from SPIR-V to the target language.

Features

  • Currently, vertex, fragment and compute shaders are supported
  • Flatten UBOs, useful for ES2 shaders
  • Show preprocessor result, show include files (for resolving shader dependencies in external tools)
  • Add defines
  • Add include directories
  • shader reflection data in Json format
  • Can output to a native binary file format (.sgs), that holds all the shaders and reflection data for pipeline
  • Can output to individual files
  • Can output all pipeline shaders (vertex+fragment) and their reflection data to .c file variables
  • Supports both GLES2 and GLES3 shaders
  • Can output to other GLSL versions like 330
  • Optional D3D11 byte code output for HLSL shaders
  • Support for special tags (begin_vert/begin_frag) in a single .glsl file (embed multiple sources)

Build

glslcc uses CMake. built and tested on:

  • Windows 10 - Microsoft visual studio 2015 Update 3
  • Ubuntu 16.04 - GCC 5.4.0
  • MacOS - 10.14 sdk with clang-1000.11.45.2

How to build on Windows

Note: These instructions assume you already have Git and CMake installed.

I assume that terminal users are using a Linux-style terminal for Windows; therefore '/' is used in file paths. If you're running Windows cmd all '/' need to replaced with '\'

  1. Get the code
git clone https://github.com/septag/glslcc.git
  1. Run CMake
./cmake -S path/to/glslcc/ -B path/to/glslcc/build

If you don't include the -B flag, the build files will instead be written to wherever cmake.exe is, which you probably don't want

  1. Build and Run the executable from the terminal and enjoy! See below for further examples of command line args
./glslcc.exe --vert=path/to/shader.vert --frag=path/to/shader.frag --output=path/to/shader.hlsl --lang=hlsl --reflect

Usage

I'll have to write a more detailed documentation but for these are the arguments: (glslcc --help)

-h --help                           - Print this help text
-V --version                        - Print version
-v --vert=<Filepath>                - Vertex shader source file
-f --frag=<Filepath>                - Fragment shader source file
-c --compute=<Filepath>             - Compute shader source file
-o --output=<Filepath>              - Output file
-l --lang=<gles/msl/hlsl/glsl>      - Convert to shader language
-D --defines(=Defines)              - Preprocessor definitions, seperated by comma or ';'
-Y --invert-y                       - Invert position.y in vertex shader
-p --profile=<ProfileVersion>       - Shader profile version (HLSL: 40, 50, 60), (ES: 200, 300), (GLSL: 330, 400, 420)
-C --dumpc                          - Dump shader limits configuration
-I --include-dirs=<Directory(s)>    - Set include directory for <system> files, seperated by ';'
-P --preprocess                     - Dump preprocessed result to terminal
-N --cvar=<VariableName>            - Outputs Hex data to a C include file with a variable name
-F --flatten-ubos                   - Flatten UBOs, useful for ES2 shaders
-r --reflect(=Filepath)             - Output shader reflection information to a json file
-G --sgs                            - Output file should be packed SGS format
-b --bin                            - Compile to bytecode instead of source. requires ENABLE_D3D11_COMPILER build flag
-g --debug                          - Generate debug info for binary compilation, should come with --bin
-O --optimize                       - Optimize shader for release compilation
-S --silent                         - Does not output filename(s) after compile success
-i --input=<(null)>                 - Input shader source file. determined by extension (.vert/.frag/.comp)
-0 --validate                       - Only performs shader validatation and error checking
-E --err-format=<glslang/msvc>      - Output error format
-L --list-includes                  - List include files in shaders, does not generate any output files

Current supported shader stages are:
        - Vertex shader (--vert)
        - Fragment shader (--frag)
        - Compute shader (--compute)

Here's some examples:

Example shader (write shaders GLSL 4.5) : You can also use #include. The compiler automatically inserts #extension GL_GOOGLE_include_directive : require at the begining of any shader.

Vertex Shader (shader.vert):

#version 450

layout (location = POSITION) in vec3 aPos;
layout (location = COLOR0) in vec4 aColor;
layout (location = TEXCOORD0) in vec2 aCoord;

layout (std140, binding=0) uniform matrices
{
    mat4 projection;
    mat4 view;
    mat4 model;
};

layout (location = COLOR0) out flat vec4 outColor;
layout (location = TEXCOORD0) out vec2 outCoord;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
    outColor = aColor;
    outCoord = aCoord;
}  

Fragment shader (shader.frag):

#version 450

precision mediump float;

layout (location = COLOR0) in flat vec4 inColor;
layout (location = TEXCOORD0) in vec2 inCoord;

layout (location = SV_Target0) out vec4 fragColor;

layout (binding = 0) uniform sampler2D colorMap;

void main() 
{
    lowp vec4 c = texture(colorMap, inCoord);
    fragColor = inColor * c;
}

Cross-compiles the vertex-shader and fragment-shader to HLSL files with reflection Json data Output files will be shader_vs.hlsl, shader_fs.hlsl for HLSL code, and shader_vs.hlsl.json, shader_fs.hlsl.json for their reflection data.

glslcc --vert=shader.vert --frag=shader.frag --output=shader.hlsl --lang=hlsl --reflect

This command does the same thing, but outputs all the data to a C header file shader.h, with specified variable names g_shader_vs, g_shader_fs, g_shader_vs_refl and g_shader_fs_refl which are the same data in files in hex representation. Also sets preprocessor values HLSL=1 and USE_TEXTURE3D=1 for both shaders.

glslcc --vert=shader.vert --frag=shader.frag --output=shader.h --lang=hlsl --reflect --cvar=g_shader --defines=HLSL=1;USE_TEXTURE3D=1

You can also pass files without explicitly defining input shaders in arguments. their shader type will be resolved by checking their file extensions. So .vert=vertex-shader, .frag=fragment-shader, .comp=compute-shader

glslcc shader.vert shader.frag --output=shader --lang=hlsl

To only validate a specific shader (useful for tools and IDEs), use --validate flag, with your specified output error format. By default, on windows, it outputs msvc's error format and on other platforms outputs gcc's error format, and only glslang's format if explicitly defined:

glslcc shader.vert --validate --err-format=glslang

Embed multiple sources into a single file

To to this, you can use the special tags and write your vertex/fragment sources inside of them. Tags are //@begin_vert for vertex shader and //@begin_frag for fragment shader. Also remember to end the block with //@end. The compiler will extract the blocks and compile each source separately just like individual files.

Note that this only works with .glsl files and no other extension:

//@begin_vert
    #version 450

    layout (location = POSITION)  in  vec3 a_pos;
    layout (location = TEXCOORD0) in  vec2 a_coord;
    layout (location = TEXCOORD0) out vec2 f_coord;

    layout (binding=0, std140) uniform matrices {
        mat4 mvp;
    };
        
    void main() {
        gl_Position = mvp * vec4(a_pos, 1.0);
        f_coord = a_coord;
    }
//@end

//@begin_frag
    #version 450

    precision mediump float;

    layout (location = TEXCOORD0)  in  vec2 f_coord;
    layout (location = SV_Target0) out vec4 frag_color;

    layout (binding = 0) uniform sampler2D tex_image;

    void main() {
        frag_color = texture(tex_image, f_coord);
    }
//@end

Reflection data

Reflection data comes in form of json files and activated with --reflect option. It includes all the information that you need to link your 3d Api to the shader

HLSL semantics

As you can see in the above example, I have used HLSL shader semantics for input and output layout. This must done for compatibility with HLSL shaders and also proper vertex assembly creation in D3D application. The reflection data also emits proper semantics for each vertex input for the application.
Here are supported HLSL semantics that you should use with layout (location = SEMANTIC):

POSITION, NORMAL, TEXCOORD0, TEXCOORD1, TEXCOORD2, TEXCOORD3, TEXCOORD4, TEXCOORD5, TEXCOORD6, TEXCOORD7, COLOR0, COLOR1, COLOR2, COLOR3, TANGENT, BINORMAL, BLENDINDICES, BLENDWEIGHT

SV_Target0, SV_Target1, SV_Target2, SV_Target3

SGS file format

There is also an option for exporting to .sgs files (--sgs) which is a simple IFF like binary format to hold all shaders (vs + fs + cs) with their reflection inside a binary blob. Check out sgs-file.h for the file format spec and headers. The blocks are layed out like this:

The blocks are composed of a uint32_t fourcc code + uint32_t variable defining the size of the block. So each block header is 8 bytes. For each header structure, check out the header file.

  • SGS block
    • struct sgs_chunk
    • STAG blocks: defines each shader stage (vs + fs + ..)
      • CODE: actual code for the shader stage
      • DATA: binary (byte-code) data for the shader stage
      • REFL: Reflection data for the shader stage
        • struct sgs_chunk_refl: reflection data header
        • struct sgs_refl_input[]: array of vertex-shader input attributes (see sgs_chunk_refl for number of inputs)
        • struct sgs_refl_uniform_buffer[]: array of uniform buffer objects (see sgs_chunk_refl for number of uniform buffers)
        • struct sgs_refl_texture[]: array of texture objects (see sgs_chunk_refl for number of textures)
        • struct sgs_refl_texture[]: array of storage image objects (see sgs_chunk_refl for number of storage images)
        • struct sgs_refl_buffer[]: array of storage buffer objects (see sgs_chunk_refl for number of storage buffers)

MSVC Linter

If you happen to work with msvc 2017 and higher, there is this extension called GLSL language integration (github) that this compiler is compatible with, so it can perform automating error checking in your editor. use these parameters in extensions's config:

glslcc -0 -E glslang

VSCode Linter

For visual studio code linting, I have modified existing GLSL Lint extension to work with this tool instead. you can find it here.

Just install the tool manually in vscode, and add these options to vscode:

    "glsllint.glslangValidatorPath": "/path/to/glslcc.exe",
    "glsllint.glslangValidatorArgs": "--validate --err-format=glslang"

D3D11 Compiler

There is a support for compiling d3d11 shaders (ps_5_0, vs_5_0, cs_5_0) into D3D11 byte-code instead of HLSL source code. On windows with Windows SDK, set ENABLE_D3D11_COMPILER=ON flag for cmake, build the project and use --bin in the command line arguments to generate binary byte-code file.

CMake module

I've added glslcc.cmake module, to facilitate shader compilation in cmake projects. here's an example on how you can use it in your CMakeLists.txt to make shaders as C header files:

include(glslcc)
set(shaders test.vert test.frag)
set_source_files_properties(${shaders} PROPERTIES GLSLCC_OUTPUT_DIRECTORY "shaders_inc")
glslcc_target_compile_shaders_h(project_name "${shaders}")

These properties can be assigned to shaders source files:

  • GLSLCC_OUTPUT_DIRECTORY: output directory path
  • GLSLCC_SHADER_LANG: shader language, gles/msl/hlsl/glsl. if not defined, it will be automatically selected by running platform
  • GLSLCC_SHADER_VERSION: shader profile version. default: hlsl:50, gles:200, glsl:330
  • GLSLCC_OUTPUT_FILENAME: compiled filename. default: SOURCE_FILE.EXT.h
  • GLSLCC_COMPILE_FLAGS: extra compilation flags to pass to glslcc
  • COMPILE_DEFINITIONS: compile definitions
  • INCLUDE_DIRECTORIES: shader include directories

TODO

  • Support for more shader stages. I didn't have any use for geometry and tesselation shaders, but the glslang supports all of them, so adding new shader stages shouldn't be a problem
Copyright 2018 Sepehr Taghdisian. All rights reserved.

https://github.com/septag/glslcc

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

   1. Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.

   2. Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

glslcc's People

Contributors

dbaum1 avatar erjanmx avatar kevinw avatar paulgessinger avatar septag avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

glslcc's Issues

Sampler Array Indexing Issues

I have come to the following problem while trying to cross-compile from glsl to hlsl bytecode (D3D11).

One of my shaders contains the following code

int index = int(fsIn.tTexture); //casting from float to int
    switch(index)
    {
        case 0:
            return u_Textures[0].Sample(...);
        case 1:
            return u_Textures[1].Sample(...);
     ...

This is all fine if it is ported the same way in hlsl, however, it gets shortened to

int _21 = int(Texture);
FragColor = u_Textures[_21]

Which is not valid D3D11 hlsl code.

Any possible workarounds without having to rewrite the shaders completely?

May thanks.

missing lib linkage

Hey @septag

Just trying to compile your tool :D

It gave following error when linking:
sxd.lib(os.obj) : error LNK2019: unresolved external symbol _GetProcessMemoryInfo@12 referenced in function _sx_os_processmem [glslcc\.build\src\glslcc.vcxproj]

So I added #pragma comment(lib, "psapi.lib") somewhere to fix it :)

PS: Suggestion: what about providing binary releases?

Shader source

Hello is there any way to put as an input a .shader file (unity) ??

Missing type qualifiers for multi-dimensional arrays

When converting compute shaders to gles profile 310, glslcc converts multi-dimensional arrays to one-dimensionsal and adjusts index expressions accordingly. Unfortunately, the adjusting index multiplier constants lack type qualifiers, leading to load errors such as:

error: could not implicitly convert operands to arithmetic operator
error: operands to arithmetic operators must be numeric

Example:

$ cat binning.comp 
#version 450
layout(local_size_x = 256, local_size_y = 1) in;

shared uint bitmaps[8][256];

void main() {
    for (uint i = 0; i < 8; i++) {
        bitmaps[i][gl_LocalInvocationID.x] = 0;
    }
}
$ glslcc --compute binning.comp --lang gles --profile 310 -o blah && cat blah_cs
binning.comp
#version 310 es
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

shared uint bitmaps[8 * 256];

void main()
{
    for (uint i = 0u; i < 8u; i++)
    {
        bitmaps[i * 256 + gl_LocalInvocationID.x] = 0u;
    }
}

Note how the constant 256 in i * 256 + gl_LocalInvocationID.x lacks a type qualifier; replacing it with 256u avoids the load error.

AutoMap option

Hello,

There is two glslang automap options that should be interesting in this tool:

shader->setAutoMapBindings(true);
shader->setAutoMapLocations(true);

This remove binding and location requirement in shader.

parse_output_log() early-outs after finding the first non-error and fails to output further errors

I've just started using the codebase so apologies if I'm missing something, but consider the following code in glslcc.cpp:

static bool parse_output_log(const char* str, std::vector<output_parse_result>* r) { const char* header = "ERROR: "; while (sx_strstr(str, header) == str) { str += sx_strlen(header); const char* divider = sx_strchar(str, ':'); <snip> r->push_back(lr); } return true; }

In my shader, the first output message in str is a "WARNING: ", not an "ERROR: ". The result appears to be that we write nothing to the output_parse_result vector as we only parse the array as far as the first non-error message and all further messages are ignored.

How to handle in cross manier stage binding

Hi,

Excellent job on library, I'm working on personal game engine and come to your shader compiler, I added the HLSL stage semantics support (POSITION, COLOR0 etc) and it fits well.

Question is,
How you handle shader bindings? While vulkan has set and binding for uniform buffers, samplers etc, HLSL and DirectX has stage binding, do you plan to add some schema/trick for this part as well?

Thanks

MSL vertex layout reordered

It seems that glslcc is reordering the vertex layout according to usage when transpiling to MSL:

#version 450
layout (location = 0) in vec2 Position;
layout (location = 1) in vec2 UV;
layout (location = 2) in vec4 Color;

/* uniforms and outputs here... */

void main()
{
    Frag_UV = UV;
    Frag_Color = Color;
    gl_Position = Projection * vec4(Position.xy,0,1);
}

Gives me this input in MSL:

struct main0_in
{
    float2 UV [[attribute(0)]];
    float4 Color [[attribute(1)]];
    float2 Position [[attribute(2)]];
};

The attribute order is the usage order in the code, not the original location. If I change the source's main() to:

void main()
{
    gl_Position = Projection * vec4(Position.xy,0,1);
    Frag_UV = UV;
    Frag_Color = Color;
}

I get the 'correct' order.

API support?

Hello, Thanks for your great works.

I just wanna know if i can use this library as cpp api by loading it.
I couldn't find api functions, It looks just supporting command line interface.

Or do you have ways to get translated code string from glslcc?

Mat4 attribute when targeting MSL results in attributes being used more than once

I have the following vertex shader inputs -

layout (location = 0) in vec3 a_position;
layout (location = 1) in vec3 a_normal;
layout (location = 2) in vec4 a_color;
layout (location = 3) in mat4 joint;
Using glslang to produce SPIR-V and then invoking SPIRV-cross targeting metal, the following MSL is produced -

struct main0_in
{
float4 joint_0 [[attribute(0)]];
float4 joint_1 [[attribute(1)]];
float3 a_position [[attribute(1)]];
float4 joint_2 [[attribute(2)]];
float3 a_normal [[attribute(2)]];
float4 joint_3 [[attribute(3)]];
float4 a_color [[attribute(3)]];
};

Which produces the following error when the msl is compiled -

error: 'attribute' index '1' is used more than once
I tried setting joint to location 0 and position, normal and color to 4 5 and 6 respectively, but the same code was generated.

Am I doing something wrong here, or is this a legitimate issue?

Binaries

Hi there, not really an issue, but is there a chance you could add built binaries to the repo?

samples failed to cross-compile

Hey again,
Just used your own samples and they refused to work:

> glslcc --vert=shader.vert --frag=shader.frag --output=shader.hlsl --lang=hlsl --reflect
ERROR: sample.vert:5: '' : vertex input cannot be further qualified
ERROR: sample.vert:5: '' : compilation terminated
ERROR: 2 compilation errors.  No code generated.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.