Code Monkey home page Code Monkey logo

rqlite's Introduction

Circle CI appveyor Go Report Card Release Docker Slack Google Group

rqlite is an easy-to-use, lightweight, distributed relational database, which uses SQLite as its storage engine.

rqlite is simple to deploy, operating and accessing it is very straightforward, and its clustering capabilities provide you with fault-tolerance and high-availability. rqlite is available for Linux, macOS, and Microsoft Windows, and can be built for many target CPUs, including x86, AMD, MIPS, RISC, PowerPC, and ARM.

Check out the rqlite FAQ.

Why?

rqlite gives you the functionality of a rock solid, fault-tolerant, replicated relational database, but with very easy installation, deployment, and operation. With it you've got a lightweight and reliable distributed relational data store.

You could use rqlite as part of a larger system, as a central store for some critical relational data, without having to run larger, more complex distributed databases.

Finally, if you're interested in understanding how distributed systems actually work, rqlite is a good example to study. Much thought has gone into its design and implementation, with clear separation between the various components, including storage, distributed consensus, and API.

How?

rqlite uses Raft to achieve consensus across all the instances of the SQLite databases, ensuring that every change made to the system is made to a quorum of SQLite databases, or none at all. You can learn more about the design here.

Key features

Quick Start

The quickest way to get running is to download a pre-built release binary, available on the GitHub releases page. Once installed, you can start a single rqlite node like so:

rqlited -node-id 1 ~/node.1

This single node automatically becomes the leader. You can pass -h to rqlited to list all configuration options.

Docker

docker run -p4001:4001 rqlite/rqlite

Check out the rqlite Docker page for more details on running nodes via Docker.

Homebrew

brew install rqlite

Forming a cluster

While not strictly necessary to run rqlite, running multiple nodes means you'll have a fault-tolerant cluster. Start two more nodes, allowing the cluster to tolerate the failure of a single node, like so:

rqlited -node-id 2 -http-addr localhost:4003 -raft-addr localhost:4004 -join http://localhost:4001 ~/node.2
rqlited -node-id 3 -http-addr localhost:4005 -raft-addr localhost:4006 -join http://localhost:4001 ~/node.3

This demonstration shows all 3 nodes running on the same host. In reality you probably wouldn't do this, and then you wouldn't need to select different -http-addr and -raft-addr ports for each rqlite node.

With just these few steps you've now got a fault-tolerant, distributed relational database. For full details on creating and managing real clusters, including running read-only nodes, check out this documentation.

Inserting records

Let's insert some records via the rqlite CLI, using standard SQLite commands. Once inserted, these records will be replicated across the cluster, in a durable and fault-tolerant manner.

$ rqlite
127.0.0.1:4001> CREATE TABLE foo (id INTEGER NOT NULL PRIMARY KEY, name TEXT)
0 row affected (0.000668 sec)
127.0.0.1:4001> .schema
+-----------------------------------------------------------------------------+
| sql                                                                         |
+-----------------------------------------------------------------------------+
| CREATE TABLE foo (id INTEGER NOT NULL PRIMARY KEY, name TEXT)               |
+-----------------------------------------------------------------------------+
127.0.0.1:4001> INSERT INTO foo(name) VALUES("fiona")
1 row affected (0.000080 sec)
127.0.0.1:4001> SELECT * FROM foo
+----+-------+
| id | name  |
+----+-------+
| 1  | fiona |
+----+-------+

Limitations

  • Because rqlite peforms statement-based replication certain non-deterministic functions, e.g. RANDOM(), are rewritten by rqlite before being passed to the Raft system and SQLite. To learn more about rqlite's support for non-deterministic functions, check out the documentation.

  • This has not been extensively tested, but you can directly read the SQLite file under any node at anytime, assuming you run in "on-disk" mode. However there is no guarantee that the SQLite file reflects all the changes that have taken place on the cluster unless you are sure the host node itself has received and applied all changes.

  • In case it isn't obvious, rqlite does not replicate any changes made directly to any underlying SQLite file, when run in "on disk" mode. If you change the SQLite file directly, you may cause rqlite to fail. Only modify the database via the HTTP API.

  • SQLite dot-commands such as .schema or .tables are not directly supported by the API, but the rqlite CLI supports some very similar functionality. This is because those commands are features of the sqlite3 command, not SQLite itself.

Pronunciation?

How do I pronounce rqlite? For what it's worth I try to pronounce it "ree-qwell-lite". But it seems most people, including me, often pronounce it "R Q lite".

rqlite's People

Contributors

otoolep avatar ngharrington avatar juneezee avatar zmedico avatar turbo avatar wangfenjin avatar lygstate avatar mkideal avatar seraphico avatar chermehdi avatar sgalsaleh avatar shane-kerr avatar tcyrus avatar tiswo avatar wanlitian avatar wilva avatar dependabot[bot] avatar testwill avatar runsisi avatar n8rb avatar sum12 avatar zdyxry avatar imba-tjd avatar ctrlrsf avatar phiwa avatar phmx avatar mkorszun avatar jtarchie avatar computerscienceiscool avatar hjorvari avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.