Code Monkey home page Code Monkey logo

ci-hud's Introduction

PyTorch Logo


PyTorch is a Python package that provides two high-level features:

  • Tensor computation (like NumPy) with strong GPU acceleration
  • Deep neural networks built on a tape-based autograd system

You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

Our trunk health (Continuous Integration signals) can be found at hud.pytorch.org.

More About PyTorch

Learn the basics of PyTorch

At a granular level, PyTorch is a library that consists of the following components:

Component Description
torch A Tensor library like NumPy, with strong GPU support
torch.autograd A tape-based automatic differentiation library that supports all differentiable Tensor operations in torch
torch.jit A compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code
torch.nn A neural networks library deeply integrated with autograd designed for maximum flexibility
torch.multiprocessing Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training
torch.utils DataLoader and other utility functions for convenience

Usually, PyTorch is used either as:

  • A replacement for NumPy to use the power of GPUs.
  • A deep learning research platform that provides maximum flexibility and speed.

Elaborating Further:

A GPU-Ready Tensor Library

If you use NumPy, then you have used Tensors (a.k.a. ndarray).

Tensor illustration

PyTorch provides Tensors that can live either on the CPU or the GPU and accelerates the computation by a huge amount.

We provide a wide variety of tensor routines to accelerate and fit your scientific computation needs such as slicing, indexing, mathematical operations, linear algebra, reductions. And they are fast!

Dynamic Neural Networks: Tape-Based Autograd

PyTorch has a unique way of building neural networks: using and replaying a tape recorder.

Most frameworks such as TensorFlow, Theano, Caffe, and CNTK have a static view of the world. One has to build a neural network and reuse the same structure again and again. Changing the way the network behaves means that one has to start from scratch.

With PyTorch, we use a technique called reverse-mode auto-differentiation, which allows you to change the way your network behaves arbitrarily with zero lag or overhead. Our inspiration comes from several research papers on this topic, as well as current and past work such as torch-autograd, autograd, Chainer, etc.

While this technique is not unique to PyTorch, it's one of the fastest implementations of it to date. You get the best of speed and flexibility for your crazy research.

Dynamic graph

Python First

PyTorch is not a Python binding into a monolithic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use NumPy / SciPy / scikit-learn etc. You can write your new neural network layers in Python itself, using your favorite libraries and use packages such as Cython and Numba. Our goal is to not reinvent the wheel where appropriate.

Imperative Experiences

PyTorch is designed to be intuitive, linear in thought, and easy to use. When you execute a line of code, it gets executed. There isn't an asynchronous view of the world. When you drop into a debugger or receive error messages and stack traces, understanding them is straightforward. The stack trace points to exactly where your code was defined. We hope you never spend hours debugging your code because of bad stack traces or asynchronous and opaque execution engines.

Fast and Lean

PyTorch has minimal framework overhead. We integrate acceleration libraries such as Intel MKL and NVIDIA (cuDNN, NCCL) to maximize speed. At the core, its CPU and GPU Tensor and neural network backends are mature and have been tested for years.

Hence, PyTorch is quite fast — whether you run small or large neural networks.

The memory usage in PyTorch is extremely efficient compared to Torch or some of the alternatives. We've written custom memory allocators for the GPU to make sure that your deep learning models are maximally memory efficient. This enables you to train bigger deep learning models than before.

Extensions Without Pain

Writing new neural network modules, or interfacing with PyTorch's Tensor API was designed to be straightforward and with minimal abstractions.

You can write new neural network layers in Python using the torch API or your favorite NumPy-based libraries such as SciPy.

If you want to write your layers in C/C++, we provide a convenient extension API that is efficient and with minimal boilerplate. No wrapper code needs to be written. You can see a tutorial here and an example here.

Installation

Binaries

Commands to install binaries via Conda or pip wheels are on our website: https://pytorch.org/get-started/locally/

NVIDIA Jetson Platforms

Python wheels for NVIDIA's Jetson Nano, Jetson TX1/TX2, Jetson Xavier NX/AGX, and Jetson AGX Orin are provided here and the L4T container is published here

They require JetPack 4.2 and above, and @dusty-nv and @ptrblck are maintaining them.

From Source

Prerequisites

If you are installing from source, you will need:

  • Python 3.8 or later (for Linux, Python 3.8.1+ is needed)
  • A compiler that fully supports C++17, such as clang or gcc (gcc 9.4.0 or newer is required)

We highly recommend installing an Anaconda environment. You will get a high-quality BLAS library (MKL) and you get controlled dependency versions regardless of your Linux distro.

NVIDIA CUDA Support

If you want to compile with CUDA support, select a supported version of CUDA from our support matrix, then install the following:

Note: You could refer to the cuDNN Support Matrix for cuDNN versions with the various supported CUDA, CUDA driver and NVIDIA hardware

If you want to disable CUDA support, export the environment variable USE_CUDA=0. Other potentially useful environment variables may be found in setup.py.

If you are building for NVIDIA's Jetson platforms (Jetson Nano, TX1, TX2, AGX Xavier), Instructions to install PyTorch for Jetson Nano are available here

AMD ROCm Support

If you want to compile with ROCm support, install

  • AMD ROCm 4.0 and above installation
  • ROCm is currently supported only for Linux systems.

If you want to disable ROCm support, export the environment variable USE_ROCM=0. Other potentially useful environment variables may be found in setup.py.

Intel GPU Support

If you want to compile with Intel GPU support, follow these

If you want to disable Intel GPU support, export the environment variable USE_XPU=0. Other potentially useful environment variables may be found in setup.py.

Install Dependencies

Common

conda install cmake ninja
# Run this command from the PyTorch directory after cloning the source code using the “Get the PyTorch Source“ section below
pip install -r requirements.txt

On Linux

pip install mkl-static mkl-include
# CUDA only: Add LAPACK support for the GPU if needed
conda install -c pytorch magma-cuda121  # or the magma-cuda* that matches your CUDA version from https://anaconda.org/pytorch/repo

# (optional) If using torch.compile with inductor/triton, install the matching version of triton
# Run from the pytorch directory after cloning
# For Intel GPU support, please explicitly `export USE_XPU=1` before running command.
make triton

On MacOS

# Add this package on intel x86 processor machines only
pip install mkl-static mkl-include
# Add these packages if torch.distributed is needed
conda install pkg-config libuv

On Windows

pip install mkl-static mkl-include
# Add these packages if torch.distributed is needed.
# Distributed package support on Windows is a prototype feature and is subject to changes.
conda install -c conda-forge libuv=1.39

Get the PyTorch Source

git clone --recursive https://github.com/pytorch/pytorch
cd pytorch
# if you are updating an existing checkout
git submodule sync
git submodule update --init --recursive

Install PyTorch

On Linux

If you would like to compile PyTorch with new C++ ABI enabled, then first run this command:

export _GLIBCXX_USE_CXX11_ABI=1

Please note that starting from PyTorch 2.5, the PyTorch build with XPU supports both new and old C++ ABIs. Previously, XPU only supported the new C++ ABI. If you want to compile with Intel GPU support, please follow Intel GPU Support.

If you're compiling for AMD ROCm then first run this command:

# Only run this if you're compiling for ROCm
python tools/amd_build/build_amd.py

Install PyTorch

export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
python setup.py develop

Aside: If you are using Anaconda, you may experience an error caused by the linker:

build/temp.linux-x86_64-3.7/torch/csrc/stub.o: file not recognized: file format not recognized
collect2: error: ld returned 1 exit status
error: command 'g++' failed with exit status 1

This is caused by ld from the Conda environment shadowing the system ld. You should use a newer version of Python that fixes this issue. The recommended Python version is 3.8.1+.

On macOS

python3 setup.py develop

On Windows

Choose Correct Visual Studio Version.

PyTorch CI uses Visual C++ BuildTools, which come with Visual Studio Enterprise, Professional, or Community Editions. You can also install the build tools from https://visualstudio.microsoft.com/visual-cpp-build-tools/. The build tools do not come with Visual Studio Code by default.

If you want to build legacy python code, please refer to Building on legacy code and CUDA

CPU-only builds

In this mode PyTorch computations will run on your CPU, not your GPU

conda activate
python setup.py develop

Note on OpenMP: The desired OpenMP implementation is Intel OpenMP (iomp). In order to link against iomp, you'll need to manually download the library and set up the building environment by tweaking CMAKE_INCLUDE_PATH and LIB. The instruction here is an example for setting up both MKL and Intel OpenMP. Without these configurations for CMake, Microsoft Visual C OpenMP runtime (vcomp) will be used.

CUDA based build

In this mode PyTorch computations will leverage your GPU via CUDA for faster number crunching

NVTX is needed to build Pytorch with CUDA. NVTX is a part of CUDA distributive, where it is called "Nsight Compute". To install it onto an already installed CUDA run CUDA installation once again and check the corresponding checkbox. Make sure that CUDA with Nsight Compute is installed after Visual Studio.

Currently, VS 2017 / 2019, and Ninja are supported as the generator of CMake. If ninja.exe is detected in PATH, then Ninja will be used as the default generator, otherwise, it will use VS 2017 / 2019.
If Ninja is selected as the generator, the latest MSVC will get selected as the underlying toolchain.

Additional libraries such as Magma, oneDNN, a.k.a. MKLDNN or DNNL, and Sccache are often needed. Please refer to the installation-helper to install them.

You can refer to the build_pytorch.bat script for some other environment variables configurations

cmd

:: Set the environment variables after you have downloaded and unzipped the mkl package,
:: else CMake would throw an error as `Could NOT find OpenMP`.
set CMAKE_INCLUDE_PATH={Your directory}\mkl\include
set LIB={Your directory}\mkl\lib;%LIB%

:: Read the content in the previous section carefully before you proceed.
:: [Optional] If you want to override the underlying toolset used by Ninja and Visual Studio with CUDA, please run the following script block.
:: "Visual Studio 2019 Developer Command Prompt" will be run automatically.
:: Make sure you have CMake >= 3.12 before you do this when you use the Visual Studio generator.
set CMAKE_GENERATOR_TOOLSET_VERSION=14.27
set DISTUTILS_USE_SDK=1
for /f "usebackq tokens=*" %i in (`"%ProgramFiles(x86)%\Microsoft Visual Studio\Installer\vswhere.exe" -version [15^,17^) -products * -latest -property installationPath`) do call "%i\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvars_ver=%CMAKE_GENERATOR_TOOLSET_VERSION%

:: [Optional] If you want to override the CUDA host compiler
set CUDAHOSTCXX=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\HostX64\x64\cl.exe

python setup.py develop
Adjust Build Options (Optional)

You can adjust the configuration of cmake variables optionally (without building first), by doing the following. For example, adjusting the pre-detected directories for CuDNN or BLAS can be done with such a step.

On Linux

export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
python setup.py build --cmake-only
ccmake build  # or cmake-gui build

On macOS

export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build --cmake-only
ccmake build  # or cmake-gui build

Docker Image

Using pre-built images

You can also pull a pre-built docker image from Docker Hub and run with docker v19.03+

docker run --gpus all --rm -ti --ipc=host pytorch/pytorch:latest

Please note that PyTorch uses shared memory to share data between processes, so if torch multiprocessing is used (e.g. for multithreaded data loaders) the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to nvidia-docker run.

Building the image yourself

NOTE: Must be built with a docker version > 18.06

The Dockerfile is supplied to build images with CUDA 11.1 support and cuDNN v8. You can pass PYTHON_VERSION=x.y make variable to specify which Python version is to be used by Miniconda, or leave it unset to use the default.

make -f docker.Makefile
# images are tagged as docker.io/${your_docker_username}/pytorch

You can also pass the CMAKE_VARS="..." environment variable to specify additional CMake variables to be passed to CMake during the build. See setup.py for the list of available variables.

make -f docker.Makefile

Building the Documentation

To build documentation in various formats, you will need Sphinx and the readthedocs theme.

cd docs/
pip install -r requirements.txt

You can then build the documentation by running make <format> from the docs/ folder. Run make to get a list of all available output formats.

If you get a katex error run npm install katex. If it persists, try npm install -g katex

Note: if you installed nodejs with a different package manager (e.g., conda) then npm will probably install a version of katex that is not compatible with your version of nodejs and doc builds will fail. A combination of versions that is known to work is [email protected] and [email protected]. To install the latter with npm you can run npm install -g [email protected]

Previous Versions

Installation instructions and binaries for previous PyTorch versions may be found on our website.

Getting Started

Three-pointers to get you started:

Resources

Communication

Releases and Contributing

Typically, PyTorch has three minor releases a year. Please let us know if you encounter a bug by filing an issue.

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions, or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR because we might be taking the core in a different direction than you might be aware of.

To learn more about making a contribution to Pytorch, please see our Contribution page. For more information about PyTorch releases, see Release page.

The Team

PyTorch is a community-driven project with several skillful engineers and researchers contributing to it.

PyTorch is currently maintained by Soumith Chintala, Gregory Chanan, Dmytro Dzhulgakov, Edward Yang, and Nikita Shulga with major contributions coming from hundreds of talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: Trevor Killeen, Sasank Chilamkurthy, Sergey Zagoruyko, Adam Lerer, Francisco Massa, Alykhan Tejani, Luca Antiga, Alban Desmaison, Andreas Koepf, James Bradbury, Zeming Lin, Yuandong Tian, Guillaume Lample, Marat Dukhan, Natalia Gimelshein, Christian Sarofeen, Martin Raison, Edward Yang, Zachary Devito.

Note: This project is unrelated to hughperkins/pytorch with the same name. Hugh is a valuable contributor to the Torch community and has helped with many things Torch and PyTorch.

License

PyTorch has a BSD-style license, as found in the LICENSE file.

ci-hud's People

Contributors

1ntegr8 avatar bigfootjon avatar dependabot[bot] avatar driazati avatar ezyang avatar facebook-github-bot avatar houseroad avatar malfet avatar ochalouhi avatar pjh5 avatar prigoyal avatar samestep avatar seemethere avatar suo avatar walterddr avatar xuzhao9 avatar yns88 avatar zengk95 avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar

ci-hud's Issues

Builds page is too wide

Right now it goes way off my laptop's screen and has come up a few times (see #68), a couple of solutions we came up with internally:

  • freeze PR number column so you don't have to scroll around to get it
  • add option to hide columns where all builds are both present + passed

One click rerun with SSH

We should add a button for GHA workflows on PRs that:

  1. Adds the with-ssh label to the associated PR
  2. Triggers a re-run of the workflow
  3. Monitors workflow annotations and reports the SSH command when its available

Add status badges

Feature Request

For each repo we should generate a status badge image that can be used in the HUD itself for a quick view on how the latest commit is faring. We could also embed this in the README

The badge itself would probably have to be generated in GHA and stored in S3 as an image, then the HUD / README can just download it as necessary.

Show properly when multiple commits are in a bundle in build2

The build1 page nicely shows all the commit corresponding to a CI run. But build2 doesn't.
It would be helpful to at least get a visual marker on build2 indicating that this is a bundle of commits (so people should check build1 for other commits) or even better have the same multi-line visualization to know what are the other commits.

Consolidate test shards

Test shards are not a logical distinction in CI jobs, they're an artifact of us increasing parallelization in our workflows. We could de-duplicate these on the HUD to compress some info:

  • aggregate status
  • merge test reports

Visually distinguish groups from individual jobs

Right now groups are just a bolded version of whatever their status is which is not always easy to identify in context. We also now have overloaded behavior for clicking, where in some cases it goes to a new webpage and in other it expands the group (which doesn't respond immediately either).

image

We should add something to groups to make them stand out more

Identify existing failures

We could leverage Dr. CI's ruleset / identification to locate existing failures. We can then highlight these on the HUD, use them in PRs to auto-scroll logs to the relevant line, and mark certain failures as already broken / flaky. We'd need some way to extract that information from Dr. CI which we can probably grab from the GitHub comment (and if we're reporting it on the HUD we can hide it behind a <details> tag in the comment.

Cannot access to PyTorch build artifacts from hud.pytorch.org/pr

Access to PyTorch build artifacts from hud.pytorch.org/pr/${PR_NUM} is not working after GitHub login and authentication. Page displayed is the same after refreshing except for the authorize_github code. This occurs on incognito/anonymous browser modes on different browsers such as Chrome, Edge and Firefox.

login-attempt-1

Integrate CIFlow

Currently probot adds a comment (example to all (non opted-out) PyTorch PRs with information about CIFlow. We should integrate this into the PR HUD and use the authorization token that we already have to control the labels on a PR. In order, we can:

  • implement the same view as the comment but with click-to-add-a-label functionality as its own React component
  • compress the view with some interactive features
  • answer questions like: what labels do I need to add X jobs

GitHub Actions jobs are not prefixed by workflow name

Currently, PyTorch has two different GitHub Actions workflows containing a job named test:

Since the HUD uses only the job name, these two workflows both get put into the same column, which in practice seems to mean that only the signal for the latter is shown, while the former gets ignored.

It would be better if GitHub Actions job names were prefixed by the workflow name as they are on GitHub itself, so those columns would instead be called "Test tools / test" and "Linux CI (pytorch-linux-xenial-py3.6-gcc5.4) / test" respectively.

cc @seemethere @malfet

/status page URL is broken

it redirects straight to /build2/pytorch-master when dialed directly, but when clicking on "status" from that page it loads correctly.

https://hud.pytorch.org/status

semi-related: the JS for the page isn't updating for me on non-incognito windows (i.e. I don't see any of the charts I do when I visit the same page in incognito on Chrome)

Mark known erroneous failures so people don't worry about them

Infra failures, for example, could be marked as something other than red X's, to make it easier for people to focus their attention on new/unknown/genuine failures.

Another possibility (as opposed to identifying these automatically) would be to just let people update the HUD UX to mark failures as erroneous or reported/mitigated to reduce redundant work.

Windows nightly builds aggregate status is always error even all subitems are green

🐛 Bug

For Group jobs, ci/circle: binary_windows in hud.pytorch.org.
The aggregate status are always red, but all sub jobs are green.

To Reproduce

From the hud.pytorch.org, select and set the Name filter as Windows

image

Expected behavior

If all sub jobs are green, the aggregate status should be green.

Additional details / screenshot

It looks the some circle jobs are still included. For example, https://circleci.com/gh/pytorch/pytorch/17013182?utm_campaign=vcs-integration-link&utm_medium=referral&utm_source=github-build-link, their status are canceled though they're not shown in the UI.
Since all nightly jobs are transferred to Github actions, the backend should not return circleci jobs.

image

[pr page] Break down logs by step

e.g. on https://github.com/pytorch/pytorch/pull/64303/checks?check_run_id=3562967932, the workflow is Lint, the job is mypy, and the step is Run mypy. Right now the logs stop at jobs, but we should let users view at the step level since we often finish each job with some cleanup that creates lots of log spew.

We might need to fetch the entire log archive for the workflow which may be prohibitively large, or we could manually parse out the ##[group] and ##[endgroup] sigils that GitHub adds to logs (this is probably best if JS can handle it)

[feature]: Dark mode

Feature Request

Add a toggle-able dark mode. It should respect the OS preference first but be toggle-able and saved in localStorage. We should start using SCSS too to make this easier. For color scheme-ing we can probably just copy all the colors from GitHub's dark/light mode

Sort PR jobs

We should put the failing jobs first, followed by successful ones, then skipped/grouped jobs

[pr page] Integrate CircleCI

We still rely a bunch on CircleCI and will for at least the coming weeks. It'd be nice if it was added to the list of runs alongside GHA. CircleCI is more liberal with un-auth'ed API requests than GitHub so we may be able to just query it directly without having the user authenticate. If that doesn't work, we could have a AWS lambda that generates the data for each commit, but this would be tricky and it's not clear if this would allow downloading logs.

[pr page] Show previous runs

We could at the very least query PR commits -> runs on those refs, but this misses job re-runs on a specific commit. These would be useful to revisit historic failures (especially if we do a better job encoding things in the URL these can be easily shared / referenced)

iOS Safari is broken

The status page doesn’t render and just shows a white screen, we’re probably missing some guards somewhere for browser APIs that aren’t on mobile (like Notification)

Using iOS + macbook safari to debug should be pretty simple, maybe we could also mock out the lack of APIs in our tests so too

Encode more state in URL

All user intractable elements should encode their state in the URL so pages can be shared, for example:

PR Page

  • current workflow
  • expanded test results
  • expanded log scroll position

HUD

  • name filter
  • group jobs checkbox

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.