Code Monkey home page Code Monkey logo

collabtm's People

Contributors

lcharlin avatar premgopalan avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

collabtm's Issues

Validation and test not taking all the available data

When looking at the log file validation.txt, I see that the program is taking fewer entries than there are on the file validation.tsv. As a concrete example, I’ve upload some dataset under this link:
https://drive.google.com/open?id=1FzBzQnGU3bQ3ojLIGy9Hby9A6Tcun-JQ

in which the train.tsv and validation.tsv files are the same, thus I guess there’s no reason to discard any data (unless there is some filter according to minimum number of entries that a user must have or something like that). All users in train.tsv have >= 2 items.

The files contain 625315 entries each, but the log says there are 434084 ratings. Same for test.txt, wich says there are 62197 entries but the file test.tsv contains 96485 entries.

The program was run with the following parameters:
collabtm -dir /home/david/RRoff -nusers 191770 -ndocs 119448 -nvocab 342260 -k 50

Bad_alloc with even the smallest datasets

I've been trying to run this software on an artifically-generated dataset, and I am constantly running out of memory (bad_alloc) even in small datasets.

As an example, I generated the following random data in a Python script:

import numpy as np, pandas as pd
from scipy.sparse import coo_matrix
from sklearn.model_selection import train_test_split

nusers = 200
nitems = 300
ntopics = 30
nwords = 250

np.random.seed(1)
a=.3 + np.random.gamma(.1, .05)
b=.3 + np.random.gamma(.1, .05)
c=.3 + np.random.gamma(.1, .05)
d=.3 + np.random.gamma(.1, .05)
e=.3 + np.random.gamma(.1, .05)
f=.5 + np.random.gamma(.1, .05)
g=.3 + np.random.gamma(.1, .05)
h=.5 + np.random.gamma(.1, .05)

np.random.seed(1)
Beta = np.random.gamma(a, b, size=(nwords, ntopics))
Theta = np.random.gamma(c, d, size=(nitems, ntopics))
W = np.random.poisson(Theta.dot(Beta.T) + np.random.gamma(1, 1, size=(nitems, nwords)), size=(nitems, nwords))

Eta = np.random.gamma(e, f, size=(nusers, ntopics))
Epsilon = np.random.gamma(g, h, size=(nitems, ntopics))
R = np.random.poisson(Eta.dot(Theta.T+Epsilon.T) + np.random.gamma(1, 1, size=(nusers, nitems)), size=(nusers, nitems))

Rcoo=coo_matrix(R)
df = pd.DataFrame({
    'UserId':Rcoo.row,
    'ItemId':Rcoo.col,
    'Count':Rcoo.data
})

df_train, df_test = train_test_split(df, test_size=0.3, random_state=1)
df_test, df_val = train_test_split(df_test, test_size=0.33, random_state=2)

df_train.sort_values(['UserId', 'ItemId'], inplace=True)
df_test.sort_values(['UserId', 'ItemId'], inplace=True)
df_val.sort_values(['UserId', 'ItemId'], inplace=True)

df_train['Count'] = df_train.Count.values.astype('float32')
df_test['Count'] = df_test.Count.values.astype('float32')
df_val['Count'] = df_val.Count.values.astype('float32')

df_train.to_csv("<dir>/train.tsv", sep='\t', index=False, header=False)
df_test.to_csv("<dir>/test.tsv", sep='\t', index=False, header=False)
df_val.to_csv("<dir>/validation.tsv", sep='\t', index=False, header=False)
pd.DataFrame({"UserId":list(set(list(df_test.UserId.values)))})\
.to_csv("<dir>/test_users.tsv", index=False, header=False)


Wcoo = coo_matrix(W)
Wdf = pd.DataFrame({
    'ItemId':Wcoo.row,
    'WordId':Wcoo.col,
    'Count':Wcoo.data
})
def mix(a, b):
    nx = len(a)
    out=str(nx) + " "
    for i in range(nx):
        out += str(a[i]) + ":" + str(float(b[i])) + " "
    return out
Wdf.groupby('ItemId').agg(lambda x: tuple(x)).apply(lambda x: mix(x['WordId'], x['Count']), axis=1)\
.to_frame().to_csv("<dir>/mult.dat", index=False, header=False)

pd.DataFrame({'col1':np.arange(nwords)}).to_csv("<dir>/vocab.dat", index=False, header=False)

Generating files that look as follows:

  • train.tsv:
0	0	4.0
0	1	6.0
0	5	5.0
0	7	5.0
0	9	2.0
0	10	5.0
  • test.tsv:
0	2	1.0
0	4	4.0
0	12	4.0
0	14	3.0
0	16	4.0
  • validation.tsv
0	23	5.0
0	30	3.0
0	32	1.0
0	33	2.0
0	46	3.0
  • test_users.tsv:
0
1
2
3
4
  • vocab.dat:
0
1
2
3
4
5
  • mult.dat:
141 0:2.0 1:4.0 2:1.0 3:2.0 5:1.0 6:2.0 9:2.0 11:1.0 15:2.0 16:3.0 17:4.0 19:3.0 21:1.0 22:4.0 23:1.0 24:3.0 26:1.0 27:1.0 29:1.0 32:3.0 33:2.0 34:1.0 35:2.0 36:1.0 39:2.0 41:1.0 42:6.0 44:1.0 45:2.0 47:1.0 48:1.0 53:5.0 54:2.0 57:1.0 63:6.0 65:1.0 66:2.0 67:1.0 68:1.0 69:1.0 72:1.0 73:1.0 76:5.0 78:1.0 79:5.0 80:1.0 83:2.0 84:3.0 86:1.0 88:5.0 89:1.0 90:4.0 92:1.0 93:2.0 94:1.0 96:2.0 98:1.0 100:4.0 107:2.0 108:1.0 109:2.0 112:2.0 113:4.0 116:1.0 119:1.0 120:2.0 124:3.0 125:7.0 129:2.0 130:1.0 132:3.0 136:1.0 137:1.0 138:3.0 139:2.0 140:1.0 143:4.0 144:2.0 145:2.0 146:10.0 148:2.0 149:2.0 150:1.0 152:4.0 155:6.0 156:2.0 157:3.0 159:2.0 161:4.0 162:1.0 163:2.0 170:1.0 171:1.0 173:3.0 174:4.0 175:3.0 176:1.0 177:1.0 180:2.0 183:1.0 185:1.0 186:2.0 187:4.0 189:1.0 190:2.0 194:1.0 196:2.0 197:2.0 198:2.0 199:4.0 200:3.0 202:2.0 204:1.0 205:1.0 206:1.0 208:1.0 209:1.0 210:3.0 212:2.0 214:1.0 217:1.0 218:1.0 219:2.0 220:1.0 221:1.0 223:2.0 226:1.0 227:1.0 228:1.0 231:1.0 232:4.0 233:4.0 235:1.0 236:2.0 238:3.0 239:1.0 242:1.0 243:1.0 246:4.0 248:2.0 249:2.0 
156 1:1.0 2:1.0 3:3.0 5:2.0 7:1.0 8:1.0 9:1.0 10:1.0 13:1.0 15:2.0 17:1.0 19:2.0 21:3.0 22:3.0 23:2.0 24:1.0 26:1.0 27:1.0 28:1.0 31:1.0 33:1.0 34:5.0 36:2.0 38:1.0 39:4.0 40:1.0 41:1.0 42:1.0 43:4.0 44:2.0 46:2.0 47:3.0 50:1.0 52:1.0 53:3.0 54:2.0 56:2.0 57:1.0 58:4.0 59:2.0 60:3.0 63:1.0 66:1.0 67:2.0 69:2.0 74:2.0 75:2.0 77:1.0 78:3.0 79:1.0 81:3.0 82:2.0 83:1.0 84:3.0 85:2.0 86:3.0 88:2.0 89:3.0 92:1.0 94:1.0 96:1.0 97:2.0 98:1.0 99:3.0 100:1.0 101:2.0 103:1.0 104:1.0 106:3.0 110:1.0 113:1.0 115:1.0 118:2.0 120:4.0 121:3.0 122:1.0 123:3.0 128:1.0 133:3.0 135:1.0 137:1.0 138:2.0 139:2.0 141:1.0 143:2.0 147:1.0 148:2.0 149:1.0 151:1.0 154:1.0 155:4.0 157:1.0 158:1.0 160:4.0 161:2.0 162:5.0 163:1.0 164:5.0 165:1.0 166:1.0 167:4.0 168:3.0 170:1.0 172:1.0 175:1.0 177:1.0 180:4.0 181:1.0 183:1.0 184:1.0 186:1.0 187:1.0 189:1.0 190:5.0 193:2.0 194:3.0 195:7.0 197:2.0 198:2.0 200:1.0 201:1.0 202:2.0 207:2.0 208:2.0 209:1.0 210:3.0 212:8.0 213:2.0 214:2.0 216:1.0 217:1.0 218:1.0 220:4.0 222:1.0 223:1.0 224:2.0 225:4.0 226:1.0 227:1.0 228:6.0 229:3.0 230:1.0 231:1.0 232:1.0 236:2.0 237:1.0 238:2.0 240:2.0 242:1.0 243:2.0 244:2.0 245:2.0 246:3.0 247:6.0 248:2.0 249:2.0 

(tried varying between integers and decimals for the values in this last one, but it didn't make a difference)

Which I think seem to fit the description of the files in the main page.

However, after trying to run this program on this data (with and without the last two argments):

collabtm -dir ~/<dir> -nusers 200 -ndocs 300 -nvocab 250 -k 20 -fixeda -lda-init

It starts allocating a lot of memory, until allocating around 8GB, after which it throws bad_alloc and terminates.

Am I missing something?

Training likelihood decreasing with iterations

If I pass a validation file which is a copy of the train file and look at the numbers in validation.txt, I see that at some point the log-likelihood starts decreasing (moving away from zero) rather than increasing.

I’m not an expert in variational inference, but, if doing full-batch updates in which each parameter is set to its expected value given the other variables, shouldn’t the training likelihood be monotonically increasing with respect to the number of iterations?

The dataset is under this link:
https://drive.google.com/open?id=1FzBzQnGU3bQ3ojLIGy9Hby9A6Tcun-JQ

Called with the following parameters:
collabtm -dir path_to_data -nusers 191770 -ndocs 119448 -nvocab 342260 -k 100

Log-likelihood shows a decrease at iterations 60 and 70, after which it stops.

0	121	-14.392807046	434084
10	1331	-13.920642836	434084
20	2543	-12.258906021	434084
30	3767	-12.187407095	434084
40	4989	-12.173852715	434084
50	6210	-12.170551069	434084
60	7458	-12.172230009	434084
70	8680	-12.180070428	434084

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.