Code Monkey home page Code Monkey logo

modelstudio's Introduction

Interactive Studio for Explanatory Model Analysis

CRAN_Status_Badge R build status Coverage Status DrWhy-eXtrAI JOSS-status

Overview

The modelStudio package automates the Explanatory Analysis of Machine Learning predictive models. Generate advanced interactive and animated model explanations in the form of a serverless HTML site with only one line of code. This tool is model agnostic, therefore compatible with most of the black box predictive models and frameworks (e.g. mlr/mlr3, xgboost, caret, h2o, scikit-learn, lightgbm, keras/tensorflow).

The main modelStudio() function computes various (instance and dataset level) model explanations and produces an interactive, customisable dashboard. It consists of multiple panels for plots with their short descriptions. Easily save and share the dashboard with others. Tools for model exploration unite with tools for EDA (Exploratory Data Analysis) to give a broad overview of the model behavior.

            explain FIFA20R & Python examplesMore ResourcesFAQ & Troubleshooting

The modelStudio package is a part of the DrWhy.AI universe.

Installation

# Install from CRAN:
install.packages("modelStudio")

# Install the development version from GitHub:
devtools::install_github("ModelOriented/modelStudio")

Simple Demo

library("DALEX")
library("modelStudio")

# fit a model
model <- glm(survived ~., data = titanic_imputed, family = "binomial")

# create an explainer for the model    
explainer <- explain(model,
                     data = titanic_imputed,
                     y = titanic_imputed$survived,
                     label = "Titanic GLM")

# make a studio for the model
modelStudio(explainer)

Save the output in the form of a HTML file - Demo Dashboard.

R & Python Examples more


The modelStudio() function uses DALEX explainers created with DALEX::explain() or DALEXtra::explain_*().

# packages for explainer objects
install.packages("DALEX")
install.packages("DALEXtra")

# update main dependencies
install.packages("ingredients")
install.packages("iBreakDown")

Make a studio for the regression ranger model on apartments data.

code
# load packages and data
library(mlr)
library(DALEXtra)
library(modelStudio)

data <- DALEX::apartments

# split the data
index <- sample(1:nrow(data), 0.7*nrow(data))
train <- data[index,]
test <- data[-index,]

# fit a model
task <- makeRegrTask(id = "apartments", data = train, target = "m2.price")
learner <- makeLearner("regr.ranger", predict.type = "response")
model <- train(learner, task)

# create an explainer for the model
explainer <- explain_mlr(model,
                         data = test,
                         y = test$m2.price,
                         label = "mlr")

# pick observations
new_observation <- test[1:2,]
rownames(new_observation) <- c("id1", "id2")

# make a studio for the model
modelStudio(explainer,
            new_observation)

xgboost dashboard

Make a studio for the classification xgboost model on titanic data.

code
# load packages and data
library(xgboost)
library(DALEX)
library(modelStudio)

data <- DALEX::titanic_imputed

# split the data
index <- sample(1:nrow(data), 0.7*nrow(data))
train <- data[index,]
test <- data[-index,]

train_matrix <- model.matrix(survived ~.-1, train)
test_matrix <- model.matrix(survived ~.-1, test)

# fit a model
xgb_matrix <- xgb.DMatrix(train_matrix, label = train$survived)
params <- list(max_depth = 3, objective = "binary:logistic", eval_metric = "auc")
model <- xgb.train(params, xgb_matrix, nrounds = 500)

# create an explainer for the model
explainer <- explain(model,
                     data = test_matrix,
                     y = test$survived,
                     label = "xgboost")

# pick observations
new_observation <- test_matrix[1:2, , drop=FALSE]
rownames(new_observation) <- c("id1", "id2")

# make a studio for the model
modelStudio(explainer,
            new_observation,
            options = ms_options(margin_left = 140))

The modelStudio() function uses dalex explainers created with dalex.Explainer().

:: package for Explainer object
pip install dalex

Use pickle Python module and reticulate R package to easily make a studio for a model.

# package for pickle load
install.packages("reticulate")

# update main dependencies
install.packages("ingredients")
install.packages("iBreakDown")

scikit-learn dashboard

Make a studio for the regression Pipeline SVR model on fifa data.

code

First, use dalex in Python:

# load packages and data
import dalex as dx
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from numpy import log

data = dx.datasets.load_fifa()
X = data.drop(columns=['overall', 'potential', 'value_eur', 'wage_eur', 'nationality'], axis=1)
y = log(data.value_eur)

# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y)

# fit a pipeline model
model = Pipeline([('scale', StandardScaler()), ('svm', SVR())])
model.fit(X_train, y_train)

# create an explainer for the model
explainer = dx.Explainer(model, data=X_test, y=y_test, label='scikit-learn')

# pack the explainer into a pickle file
explainer.dump(open('explainer_scikitlearn.pickle', 'wb'))

Then, use modelStudio in R:

# load the explainer from the pickle file
library(reticulate)
explainer <- py_load_object("explainer_scikitlearn.pickle", pickle = "pickle")

# make a studio for the model
library(modelStudio)
modelStudio(explainer, B = 5,
            options = ms_options(margin_left = 160))

lightgbm dashboard

Make a studio for the classification Pipeline LGBMClassifier model on titanic data.

code

First, use dalex in Python:

# load packages and data
import dalex as dx
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from lightgbm import LGBMClassifier

data = dx.datasets.load_titanic()
X = data.drop(columns='survived')
y = data.survived

# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y)

# fit a pipeline model
numerical_features = ['age', 'fare', 'sibsp', 'parch']
numerical_transformer = Pipeline(
  steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())
  ]
)
categorical_features = ['gender', 'class', 'embarked']
categorical_transformer = Pipeline(
  steps=[
    ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
  ]
)

preprocessor = ColumnTransformer(
  transformers=[
    ('num', numerical_transformer, numerical_features),
    ('cat', categorical_transformer, categorical_features)
  ]
)

classifier = LGBMClassifier(n_estimators=300)

model = Pipeline(
  steps=[
    ('preprocessor', preprocessor),
    ('classifier', classifier)
  ]
)
model.fit(X_train, y_train)

# create an explainer for the model
explainer = dx.Explainer(model, data=X_test, y=y_test, label='lightgbm')

# pack the explainer into a pickle file
explainer.dump(open('explainer_lightgbm.pickle', 'wb')) 

Then, use modelStudio in R:

# load the explainer from the pickle file
library(reticulate)
explainer <- py_load_object("explainer_lightgbm.pickle", pickle = "pickle")

# make a studio for the model
library(modelStudio)
modelStudio(explainer)

Save & Share

Save modelStudio as a HTML file using buttons on the top of the RStudio Viewer or with r2d3::save_d3_html().

More Resources

Acknowledgments

Work on this package was financially supported by the NCN Opus grant 2016/21/B/ST6/02176.

modelstudio's People

Contributors

hbaniecki avatar pbiecek avatar kyleniemeyer avatar piotrpiatyszek avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.