Code Monkey home page Code Monkey logo

particles's Introduction

logo

particles

Sequential Monte Carlo in python.

Motivation

This package was developed to complement the following book:

An introduction to Sequential Monte Carlo

by Nicolas Chopin and Omiros Papaspiliopoulos.

It now also implements algorithms and methods introduced after the book was published, see below.

Features

  • particle filtering: bootstrap filter, guided filter, APF.

  • resampling: multinomial, residual, stratified, systematic and SSP.

  • possibility to define state-space models using some (basic) form of probabilistic programming; see below for an example.

  • SQMC (Sequential quasi Monte Carlo); routines for computing the Hilbert curve, and generating RQMC sequences.

  • FFBS (forward filtering backward sampling): standard, O(N^2) variant, and faster variants based on either MCMC, pure rejection, or the hybrid scheme; see Dau & Chopin (2022) for a discussion. The QMC version of Gerber and Chopin (2017, Bernoulli) is also implemented.

  • other smoothing algorithms: fixed-lag smoothing, on-line smoothing, two-filter smoothing (O(N) and O(N^2) variants).

  • Exact filtering/smoothing algorithms: Kalman (for linear Gaussian models) and forward-backward recursions (for finite hidden Markov models).

  • Standard and waste-free SMC samplers: SMC tempering, IBIS (a.k.a. data tempering). SMC samplers for binary words (Schäfer and Chopin, 2014), with application to variable selection.

  • Bayesian parameter inference for state-space models: PMCMC (PMMH, Particle Gibbs) and SMC^2.

  • Basic support for parallel computation (i.e. running multiple SMC algorithms on different CPU cores).

  • Variance estimators (Chan and Lai, 2013 ; Lee and Whiteley, 2018; Olsson and Douc, 2019).

  • nested sampling: both the vanilla version and the SMC sampler of Salomone et al (2018).

Example

Here is how you may define a parametric state-space model:

import particles
import particles.state_space_models as ssm
import particles.distributions as dists

class ToySSM(ssm.StateSpaceModel):
    def PX0(self):  # Distribution of X_0 
        return dists.Normal()  # X_0 ~ N(0, 1)
    def PX(self, t, xp):  # Distribution of X_t given X_{t-1}
        return dists.Normal(loc=xp)  # X_t ~ N( X_{t-1}, 1)
    def PY(self, t, xp, x):  # Distribution of Y_t given X_t (and X_{t-1}) 
        return dists.Normal(loc=x, scale=self.sigma)  # Y_t ~ N(X_t, sigma^2)

You may now choose a particular model within this class, and simulate data from it:

my_model = ToySSM(sigma=0.2)
x, y = my_model.simulate(200)  # sample size is 200

To run a bootstrap particle filter for this model and data y, simply do:

alg = particles.SMC(fk=ssm.Bootstrap(ssm=my_model, data=y), N=200)
alg.run()

That's it! Head to the documentation for more examples, explanations, and installation instructions.

Who do I talk to?

Nicolas Chopin ([email protected]) is the main author, contributor, and person to blame if things do not work as expected.

Bug reports, feature requests, questions, rants, etc are welcome, preferably on the github page.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.