Code Monkey home page Code Monkey logo

mixedillwb's Introduction

Auto White-Balance Correction for Mixed-Illuminant Scenes

Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown

York University   

Video

Reference code for the paper Auto White-Balance Correction for Mixed-Illuminant Scenes. Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown. If you use this code or our dataset, please cite our paper:

@inproceedings{afifi2022awb,
  title={Auto White-Balance Correction for Mixed-Illuminant Scenes},
  author={Afifi, Mahmoud and Brubaker, Marcus A. and Brown, Michael S.},
  booktitle={IEEE Winter Conference on Applications of Computer Vision (WACV)},
  year={2022}
}

teaser

The vast majority of white-balance algorithms assume a single light source illuminates the scene; however, real scenes often have mixed lighting conditions. Our method presents an effective auto white-balance method to deal with such mixed-illuminant scenes. A unique departure from conventional auto white balance, our method does not require illuminant estimation, as is the case in traditional camera auto white-balance modules. Instead, our method proposes to render the captured scene with a small set of predefined white-balance settings. Given this set of small rendered images, our method learns to estimate weighting maps that are used to blend the rendered images to generate the final corrected image.

method

Our method was built on top of the modified camera ISP proposed here. This repo provides the source code of our deep network proposed in our paper.

Code

Training

To start training, you should first download the Rendered WB dataset, which includes ~65K sRGB images rendered with different color temperatures. Each image in this dataset has the corresponding ground-truth sRGB image that was rendered with an accurate white-balance correction. From this dataset, we selected 9,200 training images that were rendered with the "camera standard" photofinishing and with the following white-balance settings: tungsten (or incandescent), fluorescent, daylight, cloudy, and shade. To get this set, you need to only use images ends with the following parts: _T_CS.png, _F_CS.png, _D_CS.png, _C_CS.png, _S_CS.png and their associated ground-truth image (that ends with _G_AS.png).

Copy all training input images to ./data/images and copy all ground truth images to ./data/ground truth images. Note that if you are going to train on a subset of these white-balance settings (e.g., tungsten, daylight, and shade), there is no need to have the additional white-balance settings in your training image directory.

Then, run the following command:

python train.py --wb-settings <WB SETTING 1> <WB SETTING 2> ... <WB SETTING N> --model-name <MODEL NAME> --patch-size <TRAINING PATCH SIZE> --batch-size <MINI BATCH SIZE> --gpu <GPU NUMBER>

where, WB SETTING i should be one of the following settings: T, F, D, C, S, which refer to tungsten, fluorescent, daylight, cloudy, and shade, respectively. Note that daylight (D) should be one of the white-balance settings. For instance, to train a model using tungsten and shade white-balance settings + daylight white balance, which is the fixed setting for the high-resolution image (as described in the paper), you can use this command:

python train.py --wb-settings T D S --model-name <MODEL NAME>

Testing

Our pre-trained models are provided in ./models. To test a pre-trained model, use the following command:

python test.py --wb-settings <WB SETTING 1> <WB SETTING 2> ... <WB SETTING N> --model-name <MODEL NAME> --testing-dir <TEST IMAGE DIRECTORY> --outdir <RESULT DIRECTORY> --gpu <GPU NUMBER>

As mentioned in the paper, we apply ensembling and edge-aware smoothing (EAS) to the generated weights. To use ensembling, use --multi-scale True. To use EAS, use --post-process True. Shown below is a qualitative comparison of our results with and without the ensembling and EAS.

weights_ablation

Experimentally, we found that when ensembling is used it is recommended to use an image size of 384, while when it is not used, 128x128 or 256x256 give the best results. To control the size of input images at inference time, use --target-size. For instance, to set the target size to 256, use --target-size 256.

Network

Our network has a GridNet-like architecture. Our network consists of six columns and four rows. As shown in the figure below, our network includes three main units, which are: the residual unit (shown in blue), the downsampling unit (shown in green), and the upsampling unit (shown in yellow). If you are looking for the Pythorch implementation of GridNet, you can check src/gridnet.py.

UPDATE: There is a bug in the decoder forward function, it makes the decoder always has a single layer in depth. Please refer to this issue for more details. To fix it, please update the code in lines 149-150 with the following code:

        if j == 0:
          x_latent = latent_forward[k]
        x_latent = res_blck(x_latent)

Thanks denkorzh for catching this mistake.

net

Results

Given this set of rendered images, our method learns to produce weighting maps to generate a blend between these rendered images to generate the final corrected image. Shown below are examples of the produced weighting maps.

weights

Qualitative comparisons of our results with the camera auto white-balance correction. In addition, we show the results of applying post-capture white-balance correction by using the KNN white balance and deep white balance.

qualitative_5k_dataset

Our method has the limitation of requiring a modification to an ISP to render the additional small images with our predefined set of white-balance settings. To process images that have already been rendered by the camera (e.g., JPEG images), we can employ one of the sRGB white-balance editing methods to synthetically generate our small images with the target predefined WB set in post-capture time.

In the shown figure below, we illustrate this idea by employing the deep white-balance editing to generate the small images of a given sRGB camera-rendered image taken from Flickr. As shown, our method produces a better result when comparing to the camera-rendered image (i.e., traditional camera AWB) and the deep WB result for post-capture WB correction. If the input image does not have the associated small images (as described above), the provided source code runs automatically deep white-balance editing for you to get the small images.

qualitative_flickr

Dataset

dataset

We generated a synthetic testing set to quantitatively evaluate white-balance methods on mixed-illuminant scenes. Our test set consists of 150 images with mixed illuminations. The ground-truth of each image is provided by rendering the same scene with a fixed color temperature used for all light sources in the scene and the camera auto white balance. Ground-truth images end with _G_AS.png, while input images ends with _X_CS.png, where X refers to the white-balance setting used to render each image.

You can download our test set from one of the following links:

Acknowledgement

A big thanks to Mohammed Hossam for his help in generating our synthetic test set.

Commercial Use

This software and data are provided for research purposes only and CANNOT be used for commercial purposes.

Related Research Projects

  • C5: A self-calibration method for cross-camera illuminant estimation (ICCV 2021).
  • Deep White-Balance Editing: A multi-task deep learning model for post-capture white-balance correction and editing (CVPR 2020).
  • Interactive White Balancing: A simple method to link the nonlinear white-balance correction to the user's selected colors to allow interactive white-balance manipulation (CIC 2020).
  • White-Balance Augmenter: An augmentation technique based on camera WB errors (ICCV 2019).
  • When Color Constancy Goes Wrong: The first work to directly address the problem of incorrectly white-balanced images; requires a small memory overhead and it is fast (CVPR 2019).
  • Color temperature tuning: A modified camera ISP to allow white-balance editing in post-capture time (CIC 2019).
  • SIIE: A learning-based sensor-independent illumination estimation method (BMVC 2019).

mixedillwb's People

Contributors

mahmoudnafifi avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar

mixedillwb's Issues

about the single-illuminant Cube+ dataset color temperature

Hi ,
thanks for your work in color consistency. I thik it is helpful for me.

After read your paper, i think that you use T,D,S &T,D,F,C,S color temperature to test on cube plus dataset.
But when i download the cube+ dataset(10242),i find that the image name only inclouded(AU,AS,D,F,S,T).
So,i was wondering to know which image setting(AU or AS) you choose to replace with C(cloudy) temperature.

thanks,prof

How was the GT images created?

Hi Mahmoud,

I have two questions about dataset.

First one:

I am pretty curious about how do you create the GT images. In the paper, you mentioned "each scene has at least two types of
light sources (e.g., indoor and outdoor lighting)".

And in create GT images part, you claimed "To render the ground-truth images, we set the color temperature of our virtual camera’s WB and all light sources in the scene to 5500 K (i.e., daylight)". Do you mean the indoor and outdoor lighting are the same, that is 5500K?

Second one:

What is the difference between image D_CS and G_AS, G_AS comes from 5500K lightsource and 5500K WB settings. And D_CS has daylight (5500K) light source, and what is the white balance estimation? Does it directly come from camera standard pipeline instead of presetting?

Thanks for answering in advance.

How to calculate MAE

I would like to ask how the MAE indicator is calculated. I did not see the relevant calculation in the code you released

about the single-illuminant Cube+ dataset ground trith images

Hi ,
thanks for your work in color consistency. I thik it is helpful for me.

But i was encountering some question in your single-illuminant Cube+ dataset
When i tried to download the single-illuminant Cube+ dataset, i found the resource in ground truth image only given the illuminant estimate (txt) not the images.
Could you release the ground truth image for dowloading,or teaching me how to reconstruct the ground truth image in single-illuminant Cube+ dataset?

very thanks,

dataset

I would like to ask a question about the paper "Auto White-Balance Correction for Mixed-Illuminant Scenes". You proposed different rendering images in the paper. Can it also be implemented on other data sets? If possible, how can I get images with the suffix "_T_CS.png, _F_CS.png, _D_CS.png, _C_CS.png, _S_CS.png"?

Is there some clerical error in the Figure 9(B) of the papers

The strides of Conv2D in residual, downsampling, and upsampling units are 2, described in Figure 9(B) . Are they clerical errors?
I think the residual and upsampling units Conv2d op should be stride=1, and they are 1 in gridnet.py really.
Or I have some misunderstanding?

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.