Code Monkey home page Code Monkey logo

nyaggle's Introduction

nyaggle

GitHub Actions CI Status Python Versions Documentation Status

Documentation | Slide (Japanese)

nyaggle is a utility library for Kaggle and offline competitions, particularly focused on experiment tracking, feature engineering and validation.

  • nyaggle.ensemble - Averaging & stacking
  • nyaggle.experiment - Experiment tracking
  • nyaggle.feature_store - Lightweight feature storage using feather-format
  • nyaggle.features - sklearn-compatible features
  • nyaggle.hyper_parameters - Collection of GBDT hyper-parameters used in past Kaggle competitions
  • nyaggle.validation - Adversarial validation & sklearn-compatible CV splitters

Installation

You can install nyaggle via pip:

$pip install nyaggle

Examples

Experiment Tracking

run_experiment() is an high-level API for experiment with cross validation. It outputs parameters, metrics, out of fold predictions, test predictions, feature importance and submission.csv under the specified directory.

It can be combined with mlflow tracking.

from sklearn.model_selection import train_test_split

from nyaggle.experiment import run_experiment
from nyaggle.testing import make_classification_df

X, y = make_classification_df()
X_train, X_test, y_train, y_test = train_test_split(X, y)

params = {
    'n_estimators': 1000,
    'max_depth': 8
}

result = run_experiment(params,
                        X_train,
                        y_train,
                        X_test)

# You can get outputs that needed in data science competitions with 1 API

print(result.test_prediction)  # Test prediction in numpy array
print(result.oof_prediction)   # Out-of-fold prediction in numpy array
print(result.models)           # Trained models for each fold
print(result.importance)       # Feature importance for each fold
print(result.metrics)          # Evalulation metrics for each fold
print(result.time)             # Elapsed time
print(result.submission_df)    # The output dataframe saved as submission.csv

# ...and all outputs have been saved under the logging directory (default: output/yyyymmdd_HHMMSS).


# You can use it with mlflow and track your experiments through mlflow-ui
result = run_experiment(params,
                        X_train,
                        y_train,
                        X_test,
                        with_mlflow=True)

nyaggle also has a low-level API which has similar interface to mlflow tracking and wandb.

from nyaggle.experiment import Experiment

with Experiment(logging_directory='./output/') as exp:
    # log key-value pair as a parameter
    exp.log_param('lr', 0.01)
    exp.log_param('optimizer', 'adam')

    # log text
    exp.log('blah blah blah')

    # log metric
    exp.log_metric('CV', 0.85)

    # log numpy ndarray, pandas dafaframe and any artifacts
    exp.log_numpy('predicted', predicted)
    exp.log_dataframe('submission', sub, file_format='csv')
    exp.log_artifact('path-to-your-file')

Feature Engineering

Target Encoding with K-Fold

import pandas as pd
import numpy as np

from sklearn.model_selection import KFold
from nyaggle.feature.category_encoder import TargetEncoder


train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
all = pd.concat([train, test]).copy()

cat_cols = [c for c in train.columns if train[c].dtype == np.object]
target_col = 'y'

kf = KFold(5)

# Target encoding with K-fold
te = TargetEncoder(kf.split(train))

# use fit/fit_transform to train data, then apply transform to test data
train.loc[:, cat_cols] = te.fit_transform(train[cat_cols], train[target_col])
test.loc[:, cat_cols] = te.transform(test[cat_cols])

# ... or just call fit_transform to concatenated data
all.loc[:, cat_cols] = te.fit_transform(all[cat_cols], all[cat_cols])

Text Vectorization using BERT

You need to install pytorch to your virtual environment to use BertSentenceVectorizer. MaCab and mecab-python3 are also required if you use Japanese BERT model.

import pandas as pd
from nyaggle.feature.nlp import BertSentenceVectorizer


train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
all = pd.concat([train, test]).copy()

text_cols = ['body']
target_col = 'y'
group_col = 'user_id'


# extract BERT-based sentence vector
bv = BertSentenceVectorizer(text_columns=text_cols)

text_vector = bv.fit_transform(train)


# BERT + SVD, with cuda
bv = BertSentenceVectorizer(text_columns=text_cols, use_cuda=True, n_components=40)

text_vector_svd = bv.fit_transform(train)

# Japanese BERT
bv = BertSentenceVectorizer(text_columns=text_cols, lang='jp')

japanese_text_vector = bv.fit_transform(train)

Adversarial Validation

import pandas as pd
from nyaggle.validation import adversarial_validate

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')

auc, importance = adversarial_validate(train, test, importance_type='gain')

Validation Splitters

nyaggle provides a set of validation splitters that compatible with sklean interface.

import pandas as pd
from sklearn.model_selection import cross_validate, KFold
from nyaggle.validation import TimeSeriesSplit, Take, Skip, Nth

train = pd.read_csv('train.csv', parse_dates='dt')

# time-series split
ts = TimeSeriesSplit(train['dt'])
ts.add_fold(train_interval=('2019-01-01', '2019-01-10'), test_interval=('2019-01-10', '2019-01-20'))
ts.add_fold(train_interval=('2019-01-06', '2019-01-15'), test_interval=('2019-01-15', '2019-01-25'))

cross_validate(..., cv=ts)

# take the first 3 folds out of 10
cross_validate(..., cv=Take(3, KFold(10)))

# skip the first 3 folds, and evaluate the remaining 7 folds
cross_validate(..., cv=Skip(3, KFold(10)))

# evaluate 1st fold
cross_validate(..., cv=Nth(1, ts))

Other Awesome Repositories

Here is a list of awesome repositories that provide general utility functions for data science competitions. Please let me know if you have another one :)

nyaggle's People

Contributors

nyanp avatar harupy avatar wakame1367 avatar daikikatsuragawa avatar tenajima avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.