Code Monkey home page Code Monkey logo

cleaning-data-in-python's Introduction

Cleaning-Data-in-Python

Cleaning Data in Python

Exploring your dataFREE

So you've just got a brand new dataset and are itching to start exploring it. But where do you begin, and how can you be sure your dataset is clean? This chapter will introduce you to the world of data cleaning in Python! You'll learn how to explore your data with an eye for diagnosing issues such as outliers, missing values, and duplicate rows.

Tidying data for analysis

Here, you'll learn about the principles of tidy data and more importantly, why you should care about them and how they make subsequent data analysis more efficient. You'll gain first hand experience with reshaping and tidying your data using techniques such as pivoting and melting.

Combining data for analysis

The ability to transform and combine your data is a crucial skill in data science, because your data may not always come in one monolithic file or table for you to load. A large dataset may be broken into separate datasets to facilitate easier storage and sharing. Or if you are dealing with time series data, for example, you may have a new dataset for each day. No matter the reason, it is important to be able to combine datasets so you can either clean a single dataset, or clean each dataset separately and then combine them later so you can run your analysis on a single dataset. In this chapter, you'll learn all about combining data.

Cleaning data for analysis

Here, you'll dive into some of the grittier aspects of data cleaning. You'll learn about string manipulation and pattern matching to deal with unstructured data, and then explore techniques to deal with missing or duplicate data. You'll also learn the valuable skill of programmatically checking your data for consistency, which will give you confidence that your code is running correctly and that the results of your analysis are reliable!

Case study

In this final chapter, you'll apply all of the data cleaning techniques you've learned in this course towards tidying a real-world, messy dataset obtained from the Gapminder Foundation. Once you're done, not only will you have a clean and tidy dataset, you'll also be ready to start working on your own data science projects using the power of Python!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.