Code Monkey home page Code Monkey logo

mtb-example-psoc4-blinky's Introduction

PSoC™ 4: Blinky

This code example demonstrates how to toggle an LED periodically using PSoC™ 4.

View this README on GitHub.

Provide feedback on this code example.

Requirements

  • ModusToolbox™ software v3.1 or later

    Note: This code example version requires ModusToolbox™ software version 3.1 or later and is not backward compatible with v3.0 or older versions.

  • Board support package (BSP) minimum required version: 3.1.0

  • Programming language: C

  • Associated parts: PSoC™ 4000T

Supported toolchains (make variable 'TOOLCHAIN')

  • GNU Arm® Embedded Compiler v11.3.1 (GCC_ARM) - Default value of TOOLCHAIN
  • Arm® Compiler v6.16 (ARM)
  • IAR C/C++ Compiler v9.30.1 (IAR)

Supported kits (make variable 'TARGET')

  • PSoC™ 4000T CAPSENSE™ Evaluation Kit (CY8CKIT-040T) - Default value of TARGET

Hardware setup

This example uses the board's default configuration. See the kit user guide to ensure that the board is configured correctly to use VDDA at 1.8 V

Software setup

This example requires no additional software or tools.

Using the code example

Create the project and open it using one of the following:

In Eclipse IDE for ModusToolbox™ software
  1. Click the New Application link in the Quick Panel (or, use File > New > ModusToolbox™ Application). This launches the Project Creator tool.

  2. Pick a kit supported by the code example from the list shown in the Project Creator - Choose Board Support Package (BSP) dialog.

    The example is reconfigured automatically to work with the kit when a supported kit is selected. To work with a different supported kit later, use the Library Manager to choose the BSP. Use the Library Manager to select or update the BSP and firmware libraries used in this application. To access the Library Manager, click the link from the Quick Panel.

    You can also just start the application creation process again and select a different kit.

    To use the application for a kit that is not listed here, update the source files. If the kit does not have the required resources, the application may not work.

  3. In the Project Creator - Select Application dialog, choose the example by enabling the checkbox.

  4. (Optional) Change the suggested New Application Name.

  5. The Application(s) Root Path defaults to the Eclipse workspace which is usually the desired location for the application. If you want to store the application in a different location, you can change the Application(s) Root Path value. Applications that share libraries should be in the same root path.

  6. Click Create to complete the application creation process.

For more details, see the Eclipse IDE for ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mt_ide_user_guide.pdf).

In command-line interface (CLI)

ModusToolbox™ software provides the Project Creator as both a GUI tool and the command line tool, "project-creator-cli". The CLI tool can be used to create applications from a CLI terminal or from within batch files or shell scripts. This tool is available in the {ModusToolbox™ software install directory}/tools_{version}/project-creator/ directory.

Use a CLI terminal to invoke the "project-creator-cli" tool. On Windows, use the command line "modus-shell" program provided in the ModusToolbox™ software installation instead of a standard Windows command-line application. This shell provides access to all ModusToolbox™ software tools. You can access it by typing modus-shell in the search box in the Windows menu. In Linux and macOS, you can use any terminal application.

The "project-creator-cli" tool has the following arguments:

Argument Description Required/optional
--board-id Defined in the <id> field of the BSP manifest Required
--app-id Defined in the <id> field of the CE manifest Required
--target-dir Specify the directory in which the application is to be created if you prefer not to use the default current working directory Optional
--user-app-name Specify the name of the application if you prefer to have a name other than the example's default name Optional

The following example clones the "Blinky" application with the desired name "MyBlinky" configured for the CY8CKIT-040T BSP into the specified working directory, C:/mtb_projects:

project-creator-cli --board-id CY8CKIT-040T --app-id mtb-example-psoc4-blinky --user-app-name MyBlinky --target-dir "C:/mtb_projects"

Note: The project-creator-cli tool uses the git clone and make getlibs commands to fetch the repository and import the required libraries. For details, see the "Project creator tools" section of the ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mtb_user_guide.pdf).

In third-party IDEs

Use one of the following options:

  • Use the standalone Project Creator tool:

    1. Launch Project Creator from the Windows Start menu or from {ModusToolbox™ software install directory}/tools_{version}/project-creator/project-creator.exe.

    2. In the initial Choose Board Support Package screen, select the BSP, and click Next.

    3. In the Select Application screen, select the appropriate IDE from the Target IDE drop-down menu.

    4. Click Create and follow the instructions printed in the bottom pane to import or open the exported project in the respective IDE.


  • Use command-line interface (CLI):

    1. Follow the instructions from the In command-line interface (CLI) section to create the application, and then import the libraries using the make getlibs command.

    2. Export the application to a supported IDE using the make <ide> command.

    3. Follow the instructions displayed in the terminal to create or import the application as an IDE project.

For a list of supported IDEs and more details, see the "Exporting to IDEs" section of the ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mtb_user_guide.pdf).

Operation

  1. Connect the board to your PC using the provided USB cable through the KitProg3 USB connector.

    Figure 1. Connecting the CY8CKIT-040T kit

  2. Program the board using one of the following:

    Using Eclipse IDE for ModusToolbox™ software
    1. Select the application project in the Project Explorer.

    2. In the Quick Panel, scroll down, and click <Application Name> Program (KitProg3_MiniProg4).

    Using CLI

    From the terminal, execute the make program command to build and program the application using the default toolchain to the default target. The default toolchain and target are specified in the application's Makefile but you can override this value manually:

    make program TARGET=<BSP> TOOLCHAIN=<toolchain>
    

    Example:

    make program TARGET=CY8CKIT-040T TOOLCHAIN=GCC_ARM
    
  3. After programming, the application starts automatically.

Note: After programming, you see the following error message if debug mode is disabled. This can be ignored or enabling debug solves this error.

"Error: Error connecting Dp: Cannot read IDR"
  1. Confirm that the kit LED blinks at approximately 1 Hz.

Operation at other voltages

CY8CKIT-040T kit supports operating voltages of 1.8 V, 3.3 V, and 5 V. Use voltage selection switch available on top of the kit to set the preferred operating voltage and see the setup the VDDA supply voltage and Debug mode section .

Create custom BSP for your board

  1. Create a custom BSP for your board having any device, by following the steps given in ModusToolbox™ BSP Assistant user guide. This code example was created for the device "CY8C4046LQI-T452".

Debugging

You can debug this project to step through the code. In the IDE, use the <Application Name> Debug (KitProg3_MiniProg4) configuration in the Quick Panel. For details, see the "Program and debug" section in the Eclipse IDE for ModusToolbox™ software user guide.

By default, the debug option is disabled in the device configurator. To enable the debug option, see the Setup VDDA and Debug mode section. To achieve low power consumption, it is recommended to disable it.

Design and implementation

Set up the VDDA supply voltage and debug mode in Device Configurator

  1. Open Device Configurator from the Quick Panel.

  2. Go to the System tab. Select the Power resource, and set the VDDA value under Operating conditions as follows:

    Figure 2. Setting the VDDA supply in system tab of Device Configurator
    Figure 2

  1. By default, the debug mode is disabled for this application to reduce power consumption. Enable the debug mode to enable the SWD pins as follows:

    Figure 3. Enable debug mode in the System tab of Device Configurator
    Figure 3

Resources and settings

Table 1. Application resources

Resource Alias/object Purpose
Digital pin CYBSP_USER_LED User LED to show output

The application blinks an LED by controlling the GPIO output.


Related resources

Resources Links
Application notes AN79953 – Getting started with PSoC™ 4
Code examples Using ModusToolbox™ software on GitHub
Device documentation Download datasheets, TRMs, and other documents from the PSoC™ 4 product page
Development kits Select your kits from the Evaluation Board Finder page.
Libraries on GitHub mtb-pdl-cat2 – PSoC™ 4 Peripheral Driver Library (PDL)
mtb-hal-cat2 – Hardware Abstraction Layer (HAL) library
Middleware on GitHub capsense – CAPSENSE™ library and documents
Tools Eclipse IDE for ModusToolbox™ software – ModusToolbox™ software is a collection of easy-to-use software and tools enabling rapid development with Infineon MCUs, covering applications from embedded sense and control to wireless and cloud-connected systems using AIROC™ Wi-Fi and Bluetooth® connectivity devices.

Other resources

Infineon provides a wealth of data at www.infineon.com to help you select the right device, and quickly and effectively integrate it into your design.

Document history

Document title: CE235475PSoC™ 4: Blinky

Version Description of change
1.0.0 New code example
1.0.1 Minor readme update
1.1.0 Minor folder structure changes that does not break backward compatibility
2.0.0 Major update to support ModusToolbox™ v3.1
This version is not backward compatible with ModusToolbox™ v3.0
2.1.0 Minor update in the Pin Configuration
2.1.1 Minor configuration and read me update


© Cypress Semiconductor Corporation, 2023. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, and combinations thereof, ModusToolbox, PSoC, CAPSENSE, EZ-USB, F-RAM, and TRAVEO are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit www.infineon.com. Other names and brands may be claimed as property of their respective owners.

mtb-example-psoc4-blinky's People

Contributors

markainsw avatar

Stargazers

 avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.