Code Monkey home page Code Monkey logo

magpylib's Introduction

magpylib - A simple and user friendly magnetic toolbox for Python 3


Builds:

Documentation:

Test Coverage: Language grade: Python

Downloads: PyPI version Conda Cloud Conda Cloud

What is magpylib ?

  • Python package for calculating magnetic fields of magnets, currents and moments (sources).
  • It provides convenient methods to generate, geometrically manipulate, group and vizualize assemblies of sources.
  • The magnetic fields are determined from underlying (semi-analytical) solutions which results in fast computation times (sub-millisecond) and requires little computation power.

Dependencies:

Python3.6+, Numpy, Matplotlib


Guides & Installation:

Please check out our documentation for getting started and more info!

Quickstart:

Installing this project using pip:

  • run the following in your Python environment terminal:
    pip install magpylib
    

Installing this project locally:

  • Clone this repository to your machine.
  • In the directory, run pip install . in your conda terminal.

Example:

  • Two permanent magnets with axial magnetization are created and geometrically manipulated. They are grouped in a single collection and the system geometry is displayed using a supplied method.
  • The total magnetic field that is generated by the collection is calculated on a grid in the xz-plane and is displayed using matplotlib.

Program output:

Code:

# imports
import numpy as np
import matplotlib.pyplot as plt
import magpylib as magpy
 
# create magnets
magnet1 = magpy.source.magnet.Box(mag=[0,0,600],dim=[3,3,3],pos=[-4,0,3])
magnet2 = magpy.source.magnet.Cylinder(mag=[0,0,500], dim=[3,5], pos=[0,0,0])

# manipulate magnets
magnet1.rotate(45,[0,1,0],anchor=[0,0,0])
magnet2.move([5,0,-4])

# collect magnets
pmc = magpy.Collection(magnet1,magnet2)

# display system geometry
pmc.displaySystem()

# calculate B-fields on a grid
xs = np.linspace(-10,10,20)
zs = np.linspace(-10,10,20)
Bs = np.array([[pmc.getB([x,0,z]) for x in xs] for z in zs])

# display fields using matplotlib
fig, ax = plt.subplots()
X,Y = np.meshgrid(xs,zs)
U,V = Bs[:,:,0], Bs[:,:,2]
ax.streamplot(X, Y, U, V, color=np.log(U**2+V**2), density=1.5)
plt.show() 

magpylib's People

Contributors

lucasgcb avatar ortnermichael avatar laikh avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.