Code Monkey home page Code Monkey logo

linqtoobjectivec's Introduction

Linq To Objective-C

Bringing a Linq-style fluent query API to Objective-C.

This project contains a collection of NSArray methods that allow you to execute query using a fluent syntax, inspired by Linq. In order to use Linq to Objective-C simply copy the NSArray+LinqExtensions.hand NSArray+LinqExtensions.m files into your project and import the header within any file where you wish to use the API.

As an example of the types of query this API makes possible, let's say you have an array of Person instances, each with a surname property. The following query will create a sorted, comma-separated list of the unique surnames from the array:

Selector surnameSelector = ^id(id person){
    return [person name];
};

Accumulator csvAccumulator = ^id(id item, id aggregate) {
    return [NSString stringWithFormat:@"%@, %@", aggregate, item];
};

NSArray* surnamesList = [[[[people select:surnameSelector]
                                   sort]
                                   distinct]
                                   aggregate:csvAccumulator];

For a detailed discussion of the history of Linq and why I implemented this API, see the related blog post.

API Overview

NSArray methods:

NSDictionary methods:

NSArray methods

This section provides a few brief examples of each of the API methods. A number of these examples use an array of Person instances:

interface Person : NSObject

@property (retain, nonatomic) NSString* name;
@property (retain, nonatomic) NSNumber* age;

@end

where

- (NSArray*) where:(Condition)predicate;

Filters a sequence of values based on a predicate.

The following example uses the where method to find people who are 25:

NSArray* peopleWhoAre25 = [input where:^BOOL(id person) {
    return [[person age] isEqualToNumber:@25];
}];

select

- (NSArray*) select:(Selector)transform;

Projects each element of a sequence into a new form. Each element in the array is transformed by a 'selector' into a new form, which is then used to populate the output array.

The following example uses a selector that returns the name of each Person instance. The output will be an array of NSString instances.

NSArray* names = [input select:^id(id person) {
    return [person name];
}];

sort

- (NSArray*) sort;
- (NSArray*) sort:(Selector)keySelector;

Sorts the elements of an array, either via their 'natural' sort order, or via a keySelector.

As an example of natural sort, the following sorts a collection of NSNumber instances:

NSArray* input = @[@21, @34, @25];
NSArray* sortedInput = [input sort];

In order to sort an array of Person instances, you can use the key selector:

NSArray* sortedByName = [input sort:^id(id person) {
    return [person name];
}];

ofType

- (NSArray*) ofType:(Class)type;

Filters the elements of an an array based on a specified type.

In the following example a mixed array of NSString and NSNumber instances is filtered to return just the NSString instances:

NSArray* mixed = @[@"foo", @25, @"bar", @33];
NSArray* strings = [mixed ofType:[NSString class]];

selectMany

- (NSArray*) selectMany:(Selector)transform;

Projects each element of a sequence to an NSArray and flattens the resulting sequences into one sequence.

This is an interesting one! This is similar to the select method, however the selector must return an NSArray, with the select-many operation flattening the returned arrays into a single sequence.

Here's a quick example:

NSArray* data = @[@"foo, bar", @"fubar"];

NSArray* components = [data selectMany:^id(id string) {
    return [string componentsSeparatedByString:@", "];
}];

A more useful example might use select-many to return all the order-lines for an array of orders.

distinct

- (NSArray*) distinct;
- (NSArray*) distinct:(Selector)keySelector;

Returns distinct elements from a sequence. This simply takes an array of items, returning an array of the distinct (i.e. unique) values in source order.

The no-arg version of this method uses the default method of comparing the given objects. The version that takes a key-selector allows you to specify the value to use for equality for each item.

Here's an example that returns the distinct values from an array of strings:

NSArray* names = @[@"bill", @"bob", @"bob", @"brian", @"bob"];
NSArray* distinctNames = [names distinct];
// returns bill, bob and brian

Here's a more complex example that uses the key selector to find people instances with distinct ages:

NSArray* peopleWithUniqueAges = [input distinct:^id(id person) {
    return [person age];
}];

aggregate

- (id) aggregate:(Accumulator)accumulator;

Applies an accumulator function over a sequence. This method transforms an array into a single value by applying an accumulator function to each successive element.

Here's an example that creates a comma separated list from an array of strings:

NSArray* names = @[@"bill", @"bob", @"brian"];

id aggregate = [names aggregate:^id(id item, id aggregate) {
    return [NSString stringWithFormat:@"%@, %@", aggregate, item];
}];
// returns "bill, bob, brian"

Here's another example that returns the largest value from an array of numbers:

NSArray* numbers = @[@22, @45, @33];

id biggestNumber = [numbers aggregate:^id(id item, id aggregate) {
    return [item compare:aggregate] == NSOrderedDescending ? item : aggregate;
}];
// returns 45 

firstOrNil

- (id) firstOrNil;

Returns the first element of an array, or nil if the array is empty.

lastOrNil

- (id) lastOrNil;

Returns the last element of an array, or nil if the array is empty

skip

- (NSArray*) skip:(NSUInteger)count;

Returns an array that skips the first 'n' elements of the source array, including the rest.

take

- (NSArray*) take:(NSUInteger)count;

Returns an array that contains the first 'n' elements of the source array.

any

- (BOOL) any:(Condition)condition;

Tests whether any item in the array passes the given condition.

As an example, you can check whether any number in an array is equal to 25:

NSArray* input = @[@25, @44, @36];
BOOL isAnyEqual = [input any:^BOOL(id item) {
        return [item isEqualToNumber:@25];
    }];
// returns YES

all

- (BOOL) all:(Condition)condition;

Tests whether all the items in the array pass the given condition.

As an example, you can check whether all the numbers in an array are equal to 25:

NSArray* input = @[@25, @44, @36];
BOOL areAllEqual = [input all:^BOOL(id item) {
        return [item isEqualToNumber:@25];
    }];
// returns NO

groupBy

- (NSDictionary*) groupBy:(Selector)groupKeySelector;

Groups the items in an array returning a dictionary. The groupKeySelector is applied to each element in the array to determine which group it belongs to.

The returned dictionary has the group values (as returned by the key selector) as its keys, with an NSArray for each value, containing all the items within that group.

As an example, if you wanted to group a number of strings by their first letter, you could do the following:

NSArray* input = @[@"James", @"Jim", @"Bob"];
    
NSDictionary* groupedByFirstLetter = [input groupBy:^id(id name) {
   return [name substringToIndex:1];
}];
// the returned dictionary is as follows:
// {
//     J = ("James", "Jim");
//     B = ("Bob");
// }

toDictionary

- (NSDictionary*) toDictionaryWithKeySelector:(Selector)keySelector;
- (NSDictionary*) toDictionaryWithKeySelector:(Selector)keySelector valueSelector:(Selector)valueSelector;

Transforms the source array into a dictionary by applying the given keySelector and (optional) valueSelector to each item in the array. If you use the toDictionaryWithKeySelector: method, or the toDictionaryWithKeySelector:valueSelector: method with a nil valueSelector, the value for each dictionary item is simply the item from the source array.

As an example, the following code takes an array of names, creating a dictionary where the key is the first letter of each name and the value is the name (in lower case).

NSArray* input = @[@"Frank", @"Jim", @"Bob"];

NSDictionary* dictionary = [input toDictionaryWithKeySelector:^id(id item) {
    return [item substringToIndex:1];
} valueSelector:^id(id item) {
    return [item lowercaseString];
}];

// result:
// (
//    F = frank;
//    J = jim;
//    B = bob;
// )

Whereas in the following there is no value selector, so the strings from the source array are used directly.

NSArray* input = @[@"Frank", @"Jim", @"Bob"];

NSDictionary* dictionary = [input toDictionaryWithKeySelector:^id(id item) {
    return [item substringToIndex:1];
}];

// result:
// (
//    F = Frank;
//    J = Jim;
//    B = Bob;
// )

count

- (NSUInteger) count:(Condition)condition;

Counts the number of elements in an array that pass a given condition.

As an example, you can check how many numbers equal a certain value:

NSArray* input = @[@25, @35, @25];

NSUInteger numbersEqualTo25 = [input count:^BOOL(id item) {
    return [item isEqualToNumber:@25];
}];
// returns 2

concat

- (NSArray*) concat:(NSArray*)array;

Returns an array which is the result of concatonating the given array to the end of this array.

reverse

- (NSArray*) reverse;

Returns an array that has the same elements as the source but in reverse order.

NSDictionary methods

This section provides a few brief examples of each of the API methods.

where

- (NSDictionary*) where:(KeyValueCondition)predicate;

Filters a dictionary based on a predicate.

The following example uses filters a dictionary to remove any keys that are equal to their value.

NSDictionary* result = [input where:^BOOL(id key, id value) {
   return [key isEqual:value];
}];

select

- (NSDictionary*) select:(KeyValueSelector)selector;

Projects each key-value pair in a dictionary into a new form. Each key-value pair is transformed by a 'selector' into a new form, which is then used to populate the values of the output dictionary.

The following example takes a dictionary which has string values, returning a new dictionary where each value is the first character of the source string.

NSDictionary* result = [input select:^id(id key, id value) {
    return [value substringToIndex:1];
}];

toArray

- (NSArray*) toArray:(KeyValueSelector)selector;

Projects each key-value pair in a dictionary into a new form, which is used to populate the output array.

The following example takes a dictionary which has string values, returning an array which concatenates the key and value for each item in the dictionary.

NSDictionary* input = @{@"A" : @"Apple", @"B" : @"Banana", @"C" : @"Carrot"};

NSArray* result = [input toArray:^id(id key, id value) {
    return [NSString stringWithFormat:@"%@, %@", key, value];
}];

// result:
// (
//    "A, Apple",
//    "B, Banana",
//    "C, Carrot"
// )

any

- (BOOL) any:(KeyValueCondition)condition;

Tests whether any key-value pair in the dictionary passes the given condition.

As an example, you can check whether value contains the letter 'n':

NSDictionary* input = @{@"a" : @"apple", @"b" : @"banana", @"c" : @"bat"};

BOOL anyValuesHaveTheLetterN = [input any:^BOOL(id key, id value) {
    return [value rangeOfString:@"n"].length != 0;
}];
// returns YES

all

- (BOOL) all:(KeyValueCondition)condition;

Tests whether all the key-value pairs in the dictionary pass the given condition.

As an example, you can check whether all values contains the letter 'a', or use the key component of the condition to see if each value contains the string key:

NSDictionary* input = @{@"a" : @"apple", @"b" : @"banana", @"c" : @"bat"};

BOOL allValuesHaveTheLetterA = [input all:^BOOL(id key, id value) {
    return [value rangeOfString:@"a"].length != 0;
}];
// returns YES

BOOL allValuesContainKey = [input all:^BOOL(id key, id value) {
    return [value rangeOfString:key].length != 0;
}];
// returns NO - the value 'bat' does not contain the letter it is keyed with 'c'

count

- (NSUInteger) count:(KeyValueCondition)condition;

Counts the number of key-value pairs that satisfy the given condition.

The following example counts how many dictionary values contain the key:

NSDictionary* input = @{@"a" : @"apple", @"b" : @"banana", @"c" : @"bat"};


NSUInteger valuesThatContainKey = [input count:^BOOL(id key, id value) {
    return [value rangeOfString:key].length != 0;
}];
// returns 2 - "bat" does not contain the key "c"

merge

- (NSDictionary*) merge:(NSDictionary*)dic;

Merges the contents of this dictionary with the given dictionary. For any duplicates, the value from the source dictionary will be used.

The following example merges a pair of dictionaries

NSDictionary* input = @{@"a" : @"apple", @"b" : @"banana", @"c" : @"cat"};

NSDictionary* result = [input @{@"d" : @"dog", @"e" : @"elephant"}];

// result:
// (
//    a = apple;
//    b = banana;
//    c = cat;
//    d = dog;
//    e = elephant;
// )

linqtoobjectivec's People

Contributors

colineberhardt avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.