Code Monkey home page Code Monkey logo

bi-master's Introduction

Classificação e previsão de imagens de rochas em poços perfurados por meio de métodos de aprendizagem supervisionados por aprendizagem profunda e modelos pré-treinados


Trabalho apresentado ao curso BI MASTER como pré-requisito para conclusão de curso e obtenção de crédito na disciplina "Projetos de Sistemas Inteligentes de Apoio à Decisão".


Resumo

Uma empresa de pesquisa geológica deseja criar uma ferramenta para identificar e classificar os dados de suas imagens. Esta ferramenta possuirá uma capacidade de pesquisa em que um analista fornece uma imagem de interesse e é apresentada a outras imagens com carater classificatório das mesmas. A tarefa é criar o componente de deep learning para este aplicativo de identificação e classificação de imagem. O modelo deve retornar a classificação e a predição das imagens com base nas imagens de entrada.

Abstract

A geological survey company wants to create a tool to identify and classify their image data. This tool will have a search capability in which an analyst provides an image of interest and is presented to other images as a classifier. The task is to create the deep learning component for this image identification and classification application. The model should return the classification and prediction of the images based on the input images.

1. Introdução

Esta monografia visa apresentar a aplicação de métodos de aprendizado supervisionado à predição de imagens de rochas em poços de perfuração e representa um novo estudo a ser desenvolvido por equipe técnica da Petrobras.

O uso de deep learning para o processo de orçamentação apresenta uma série de vantagens, entre elas, a redução de HH envolvido, melhoria no grau de assertividade, celeridade na resposta e possibilidade de testar diferentes cenários de projeto em menor tempo.

Este trabalho se propõe a classificar as rochas através de suas imagens adquiridas durante as atividades geológicas (perfuração), utilizando técnicas de Deep Learning e modelos pré treinados.

Utilizamos uma base do Kaggle (https://www.kaggle.com/tanyadayanand/geological-image-similarity/metadata) de setembro de 2020 para iniciarmos esse estudo, embora os dados estejam em inglês, os conceitos básicos são os mesmos. O trabalho envolveu a análise de modelos diferentes, em todos eles foram considerados as etapas: análise exploratória de dados, missing values e reavaliação dos atributos pelo peso.

2. Modelagem

Primeiramente foi feita a análise dos dados para entender quais atributos manter no modelo, em seguida foi criado um dataframe (data_df) com a divisão entre as imagens (path) e as identificações das rochas (labels).

Após isso, as imagens foram convertidas de 28 por 28 para 32 por 32 para que possam abranger só modelos utilizados. O rótulo foi associado a uma rocha. Houve a conversão dos dados de imagens e rótulos em matrizes numpy, enquanto dimensiona os pixels. Os atributos dos rótulos foram codificados em tags (binárias) e, além disso, foi verificado quais atributos apresentaram missing values.

O balanceamento dos dados e processos para gerar as duas bases tratadas, nesse momento foi inserida a funcionalidade de Split Data para gerar as duas bases, a de treino (0.8 de partição) e a de teste (0.2 de partição). A seguir, foi novamente realizado esse processo para gerar a base de validação.

Realizei a criação do Data Augumentation com a finalidade da criação de mais dados aleatórios de acordo com a necessidade futura de testes em outros modelos.

Diferentes modelos foram testados usando as seguintes arquiteturas de Redes Neurais, Shallow e Deep Learning: Convolucionais, VGG16, Inception V3 e Neural Net (MLP).

Foram testados três modelos de Machine Learning para classificação supervisionada (Convolucionais, VGG16 pré treinado, Inception V3) sendo adotado o modelo Convolucional por apresentar as melhores métricas de avaliação.

2.1. Parâmetros do modelo

Os melhores parâmetros encontrados para o modelo são:

• INIT_LR = 1e-3 • EPOCHS = 200 • BS=24

2.2. Modelos treinados

Foram treinados dois modelos distintos, sendo eles:

• Modelo Conv2D

image

• Modelo VGG16 e Inception V3

Foram gerados três modelos distintos, pois xxxxxx. Por isso a idéia é que o usuário possa escolher o classificador que melhor se adeque aos dados do usuário.

2.3. Métricas principais de avaliação dos modelos

image

• Conv2D (a) (26/11/2021) –

image

2.3.2. Modelo pre-trained VGG16 Model

image

• VGG16 (a)

  • Precisão de treinamento e validação, bem como a perda -

image

  • Matrix de Confusão:

image

  • Matrix de Confusão com mapa de calor (Usando Data augumentation):

image

3. Resultados

  • Conv2D (a) –

  • Relatório de classificação:

Podemos resumir o desempenho do nosso classificador da seguinte forma:

  • Precision: que é a capacidade de encontrar somente as amostras relevantes. A maioria das amostras estão com o percentual perto de 1.00. Somente a classe andesite apresentou uma leve variação, respectivamente, de 0.04%.
  • Recall: que é a capacidade de encontrar todas as amostras positivas. Somente as classes andesite e quartzite apresentaram, respectivamente, uma variação de 0.04% e 0.03%. -f1-Score: média harmônica de precisão e recall.

image

  • Matriz de Confusão:

image

  • Calculate the confusion matrix and use it to derive the precision, sensitivity and specificitye ---

    Accuracy_score: 0.9833

    Precision:

      [0.95881226 0.97810945 1.         0.98842105 0.98192771 0.99408284]
    

    Recall or Sensitivity:

      [0.97468354 0.99493927 1.         0.97104447 0.98291457 0.97674419]
    
  • Matrix de Confusão com mapa de calor (Usando Data augumentation):

image

Com a técnica de data augumentation, ou seja, aumento dos dados de teste para realização das predições, houve piora na classe schist, em relação aos - Conv2D (b) e (c), ambos abaixo, que já apresentavam na Matriz de confusão (pura) um “erro” com relação a classificação das imagens das respectivas rochas.

4. Conclusões

O modelo com a melhor acurácia foi o Deep Learning Modelo Conv2D (A) com 98.33% e o pior foi pre treinado VGG16 Model com 97.38%. Podemos destacar também que o modelo Deep Learning também é eficiente com aplicações tais como: reconhecimento de fala e imagem, processamento de linguagem natural, sistemas de recomendação, dentre outros.

Particularmente nesse trabalho, existe a oportunidade de um direcionamento para todas os projetos de imagens de geologia no ambiente da companhia.


Matrícula: 192.190.138

Pontifícia Universidade Católica do Rio de Janeiro

Curso de Pós Graduação Business Intelligence Master

bi-master's People

Contributors

fabiobasson avatar manoelakohler avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.