Code Monkey home page Code Monkey logo

safespaces's Introduction

Safespaces

This is the development / prototyping environment for 'Safespaces', a 3D/VR desktop environment for the Arcan display server. To get the full use out of it, first make sure that you have an OpenHMD supported headset, a working Arcan installation along with the vrbridge tool all setup (see the main arcan repository for instructions and configuring and installing).

Note that this is a highly experimental young project. Prolonged use is quite likely unhealthy in a number of ways, eye strain guaranteed while debugging. Tread carefully and try with non-VR device profiles first. Keep a vomit-bucket nearby.

The project and related development is discussed in the #arcan IRC channel on the freenode IRC network.

Setting up

You can start simply with:

arcan /path/to/safespaces

Or for specifying profiles other than those labeled as 'default' with:

arcan /path/to/safespaces space=spacename device=devicename

The space profile match to the corresponding spacename (.lua) in the spaces/ subfolder which defines environment layout, visuals, workflow and input response. The device profile controls how the rendering pipe will be configured. There are a few default device presets to chose from:

  • basic - takes whatever the arcan vr bridge provides as the default
  • monoscopic - normal "3D" with mouse and keyboard
  • psvr - waits for a PSVR HMD display to appear before activating
  • simulated - works like monoscopic but outputs with a faked profile

The next section, configuration, goes into detail on how these can be extended or complemented.

Configuration

The config.lua file determines the reserved meta keys, reported client display properties, font and so on. The configuration is further split up into the (empty) default autorun.lua, the command-line controllable device profile and the currently active 'Space'.

Spaces

A space is simply a synchronized set of activated command paths that follow a /path/to/command or /path/to/key=value for non-binary settings. The full set of possible such paths are covered in API.md, including the option to load other spaces (with no protection against recursion, mind you). Every window management option and interaction model will be provided in this way, optionally via a mountable filesystem to make it easier to discover.

Devices

The device profile determines rendering mode, target output and input devices, arguments to the VR device bridge and possible overrides for properties such as oversampling and distortion parameters, along with device- specific input bindings. Note that any collisions between bindings defined for a device vs. bindings defined for the global config will be biased in favor of the global config and a warning printed to stdout for each collision.

Troubleshooting

There are a number of moving parts that can go wrong here, depending on the lower details of your system. For VR use, always make sure that the HMD itself is working via OpenHMD and their simple text examples first. Then make sure that your user actually has access to the input and output devices that you wish to use.

The next big part (for VR use) is the presence of the 'arcan_vr' binary. Not only do you have to build it manually (arcan git repository, tools/vrbridge) but you also have to set the path to it in the arcan configuration database, see the README.md for the vrbridge tool on details for that.

Roadmap / Status

Milestone 1:

  • Devices

    • Simulated (3D-SBS)
    • Simple (Monoscopic 3D)
    • Single HMD
    • Distortion Model
      • [p] Shader Based
      • Mesh Based
      • Validation
    • Mouse
    • Keyboard
  • Models

    • Primitives
      • Cube
        • Basic mesh
        • 1 map per face
        • cubemapping
      • Sphere
        • Basic mesh
        • Hemisphere
      • Cylinder
        • Basic mesh
        • half-cylinder
      • Rectangle
        • Custom Mesh (.ctm)
      • GlTF2
        • Simple/Textured Mesh
        • Skinning/Morphing/Animation
        • Physically Based Rendering
      • Stereoscopic Mapping
        • Side-by-Side
        • Over-and-Under
        • Swap L/R Eye
  • Basic Layouter ("Window Manager")

    • Circular Layers
    • Swap left / right
    • Cycle left / right
    • Minimize motion on rebuild
    • Transforms (spin, nudge, scale)
    • Curved Planes
    • Billboarding
    • Fixed "infinite" Layers
    • Vertical hierarchies
    • Connection- activated models
  • Clients

    • Built-ins (terminal/external connections)
      • Launch targets
    • Xarcan
    • Wayland-simple (toplevel/fullscreen only)

Milestone 2:

  • Advanced Layouters

    • Room Scale
    • Portals / Space Switching
  • Improved Rendering

    • Equi-Angular Cubemaps
    • Stencil-masked Composition
    • Surface- projected mouse cursor
  • Devices

    • Gloves
    • Eye Tracker
    • Video Capture Analysis
    • Positional Tracking / Tools
    • Dedicated Handover/Leasing
    • Reprojection
      • Mouse
        • Gesture Detection
          • Sensitivity Controls
      • Keyboard
        • Repeat rate controls
          • Runtime keymap switching
    • Multiple- HMDs
      • Passive
      • Active
  • Clients

    • Full Wayland-XDG
      • Custom cursors
      • Multiple toplevels
      • Popups
      • Positioners
    • Full LWA (3D and subsegments)
      • Native Nested 3D Clients
      • Adoption (Crash Recovery, WM swapping)
      • Clipboard support
  • Convenience

    • Streaming / Recording

Milestone 3:

  • Devices

    • Haptics
    • Multiple, Concurrent HMDs
    • Advanced Gesture Detection
    • Kinematics Predictive Sensor Fusion
  • Networking

    • Share Space
      • Dynamic Resource Streaming
      • Avatar Synthesis
      • Filtered sensor state to avatar mapping
      • Voice Chat
  • Clients

    • Alternate Representations
    • Dynamic LoD
  • Rendering

    • Culling
    • Physics / Collision Response
    • Multi-Channel Signed Distance Fields

safespaces's People

Contributors

letoram avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.