Code Monkey home page Code Monkey logo

deftruth / cuda-learn-notes Goto Github PK

View Code? Open in Web Editor NEW
543.0 7.0 56.0 355 KB

🎉CUDA 笔记 / 大模型手撕CUDA / C++笔记,更新随缘: flash_attn、sgemm、sgemv、warp reduce、block reduce、dot product、elementwise、softmax、layernorm、rmsnorm、hist etc.

Home Page: https://github.com/DefTruth/cuda-learn-notes

License: GNU General Public License v3.0

Cuda 91.55% C++ 1.21% Python 7.24%
cuda cuda-kernels cuda-programming elementwise flash-attention flash-attention-2 gemm gemv layernorm rmsnorm

cuda-learn-notes's Introduction

cuda-learn-note

📒CUDA-Learn-Notes: CUDA 笔记 / 大模型手撕CUDA / C++笔记,更新随缘: flash_attn、sgemm、sgemv、warp reduce、block reduce、dot、elementwise、softmax、layernorm、rmsnorm、histogram、relu、sigmoid etc.

其他项目 🔥🔥

🛠lite.ai.toolkit 💎torchlm 📒statistic-learning-R-note 🎉cuda-learn-note 📖Awesome-LLM-Inference

0x00 前言

前段时间参加了一些LLM AI Infra面试,基本都要手撕CUDA⚡️,于是整体复习了一下CUDA优化的内容,也整理了一些高频题的写法。笔记分享在这里,不定期更新。关于LLM AI Infra,也推荐我整理的: 📖Awesome-LLM-Inference

0x01 📖目录

0x02 sgemm naive, sgemm + block-tile + k-tile + vec4 (©️back👆🏻)

#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>

#define WARP_SIZE 32
#define INT4(value) (reinterpret_cast<int4*>(&(value))[0])
#define FLOAT4(value) (reinterpret_cast<float4*>(&(value))[0])

// SGEMM: Block Tile + K Tile, with smem
// Block Tile (BM, BN) + K Tile (BK=32)
// grid((N + BN - 1) / BN, (M + BM - 1) / BM), block(BN, BM)
// a: MxK, b: KxN, c: MxN, compute: c = a * b, all row major  
__global__ void sgemm(float* a, float* b, float* c, int M, int N, int K) {
  // [1] Block Tile: 32x32的block处理c上一块32x32的元素计算
  // [2]     K Tile: 使用共享内存,并将K分块为BK大小的块
  constexpr int BM = 32;
  constexpr int BN = 32;
  constexpr int BK = 32;
  __shared__ float s_a[BM][BK], s_b[BK][BN]; 

  int bx = blockIdx.x;
  int by = blockIdx.y;
  int tx = threadIdx.x;
  int ty = threadIdx.y;
  int tid = threadIdx.y * blockDim.x + tx; // tid within the block
  // load values to shared memory, 32x32 threads working together 
  // to fetch data along the row direction of a and b both for s_a 
  // and s_b 32x32x4x2=8KB, we use 32x32 threads within block to 
  // load 32x32 elements from global memory to shared memory, namely, 
  // each thread will load 1 element.
  int load_smem_a_m = tid / 32; // 0~31, tid / 32, tid / BM, threadIdx.y
  int load_smem_a_k = tid % 32; // 0~31, tid % 32, tid % BK, threadIdx.x
  int load_smem_b_k = tid / 32; // 0~31, tid / 32, tid / BK, threadIdx.y
  int load_smem_b_n = tid % 32; // 0~31, tid % 32, tid % BN, threadIdx.x
  int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
  int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
  // if (load_gmem_a_m >= M || load_gmem_b_n >= N) return;
  
  float sum = 0.f;
  for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
    int load_gmem_a_k = bk * BK + load_smem_a_k;
    int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
    s_a[load_smem_a_m][load_smem_a_k] = a[load_gmem_a_addr];
    int load_gmem_b_k = bk * BK + load_smem_b_k;
    int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
    s_b[load_smem_b_k][load_smem_b_n] = b[load_gmem_b_addr];
    __syncthreads();
    #pragma unroll
    for (int k = 0; k < BK; ++k) {
      int comp_smem_a_m = load_smem_a_m;
      int comp_smem_b_n = load_smem_b_n;
      sum += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
    }
    __syncthreads();
  }
  int store_gmem_c_m = load_gmem_a_m;
  int store_gmem_c_n = load_gmem_b_n;
  int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
  c[store_gmem_c_addr] = sum;
}

// SGEMM: Block Tile + Thread Tile + K Tile + Vec4, with smem
// BK:TILE_K=8 BM=BN=128
// TM=TN=8 增加计算密度 BM/TM=16 BN/TN=16
// dim3 blockDim(BN/TN, BM/TM);
// dim3 gridDim((N + BN - 1) / BN, (M + BM - 1) / BM)
__global__ void sgemm_thread_tile_vec4(
  float* a, float* b, float* c, int M, int N, int K) {
  // [1]  Block Tile: 一个16x16的block处理C上大小为128X128的一个目标块
  // [2] Thread Tile: 每个thread负责计算TM*TN(8*8)个元素,增加计算密度
  // [3]      K Tile: 将K分块,每块BK大小,迭代(K+BK-1/BK)次,
  //                  每次计算TM*TN个元素各自的部分乘累加
  // [4]   Vectorize: 减少load和store指令,使用float4
  constexpr int BM = 128;
  constexpr int BN = 128;
  constexpr int BK = 8; 
  constexpr int TM = 8;
  constexpr int TN = 8;

  int bx = blockIdx.x;
  int by = blockIdx.y;
  int tx = threadIdx.x;
  int ty = threadIdx.y;
  int tid = threadIdx.y * blockDim.x + tx; // tid within the block
  __shared__ float s_a[BM][BK], s_b[BK][BN]; // 2*128*8*4=8KB
  
  // 0. 先计算shared memory中的索引
  // tid和需要加载的smem s_a[BM][BK] 之间的索引关系 BM=128 BK=8 按行读取 A行主序
  // 对于s_a每行8个数据,每个线程读取4个,需要2个线程;总共128行,需要128x2刚好256线程
  int load_smem_a_m = tid / 2; // tid/2 (128/8)*(128/8)=256 threads per block, tid/2->[0,128), BM=128 0~127
  int load_smem_a_k = (tid % 2 == 0) ? 0 : 4;  // (tid%2 == 0) ? 0 : 4, col of s_a 0,4
  // tid和需要加载的smem s_b[BK][BN] 之间的索引关系 BK=8 BN=128 按行读取 B行主序
  // 对于s_b每行128个数据,每个线程读4个数据,需要32个线程;总共8行,需要32x8=256个线程
  int load_smem_b_k = tid / 32; // tid/32, row of s_b 256/32=8 行 0~7
  int load_smem_b_n = (tid % 32) * 4;  // (tid % 32) * 4, col of s_b 0,4,...,124
  // 1. 再计算全局内存中的索引
  // 要加载到s_a中的元素对应到A全局内存中的行数 每个block负责出C中大小为BM*BN的块
  int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
  int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
  
  float r_c[TM][TN] = {0.0}; // 8x8
  // 2. 先对K进行分块,每块BK大小
  for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
    // 加载数据到共享内存smem s_a BM*BK 128*8 vectorize float4
    int load_gmem_a_k = bk * BK + load_smem_a_k; // global col of a
    int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
    FLOAT4(s_a[load_smem_a_m][load_smem_a_k]) = FLOAT4(a[load_gmem_a_addr]);
    // 加载数据到共享内存smem s_b BK*BN 8*128 vectorize float4
    int load_gmem_b_k = bk * BK + load_smem_b_k; // global row of b
    int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n; 
    FLOAT4(s_b[load_smem_b_k][load_smem_b_n]) = FLOAT4(b[load_gmem_b_addr]); 
    __syncthreads();
    #pragma unroll
    for (int k = 0; k < BK; k++) {
      // 3. 每个线程负责计算BM*BN(12x128)中的TM*TN(8x8)个元素
      #pragma unroll
      for (int m = 0; m < TM; m++) {
        #pragma unroll
        for (int n = 0; n < TN; n++) {
          // k from 0~7,0 ~ BK, ty and tx range from 0 to 15, 16x8=128
          int comp_smem_a_m = ty * TM + m;  // 128*8 128/TM(8)=16 M方向 16线程
          int comp_smem_b_n = tx * TN + n;  // 8*128 128/TN(8)=16 N方向 16线程
          r_c[m][n] += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
        }
      }
    }
    __syncthreads();
  }

  #pragma unroll
  for (int m = 0; m < TM; ++m) {
    int store_gmem_c_m = by * BM + ty * TM + m;
    #pragma unroll
    for (int n = 0; n < TN; n += 4) {
      int store_gmem_c_n = bx * BN + tx * TN + n;
      int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
      FLOAT4(c[store_gmem_c_addr]) = FLOAT4(r_c[m][n]);
    }
  }
}

这里gemm的实现比较简单,只使用了CUDA Cores,并且只实现Block Tile + K Tile以及Block Tile + K Tile+Thread Tile+向量化的版本。主要在于如何加载gmem中的数据到smem,也就是把全局内存中的数据索引mapping到共享内存中的。核心思维:把一个block中的线程id按照线性来理解,然后把这个线性的id和全局内存索引以及共享内存索引进行匹配。比如Block Tile + K Tile的实现,block内一共32x32个Threads,需要加载到smem的数据也是32x32,那么,最简单的做法,只需要每个线程加载一个互不重复数据即可。NOTE,本文的gemm kernel修改自:紫气东来:CUDA(三):通用矩阵乘法:从入门到熟练

0x03 warp/block reduce sum/max (©️back👆🏻)

// Warp Reduce Sum
template<const int kWarpSize = WARP_SIZE>
__device__ __forceinline__ float warp_reduce_sum(float val) {
  #pragma unroll
  for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
    val += __shfl_xor_sync(0xffffffff, val, mask);
  }
  return val;
}

// Warp Reduce Max
template<const int kWarpSize = WARP_SIZE>
__device__ __forceinline__ float warp_reduce_max(float val) {
  #pragma unroll
  for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
    val = fmaxf(val, __shfl_xor_sync(0xffffffff, val, mask));
  }
  return val;
}

// Block reduce sum/max/min device helper for Layer/RMS Norm/Softmax etc.
// grid 1D block 1D, grid(N/128), block(128)
template<const int NUM_THREADS=128>
__device__ __forceinline__ float block_reduce_sum(float val) {
  // always <= 32 warps per block (limited by 1024 threads per block)
  constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
  int warp = threadIdx.x / WARP_SIZE;
  int lane = threadIdx.x % WARP_SIZE;
  static __shared__ float shared[NUM_WARPS];
  
  val = warp_reduce_sum<WARP_SIZE>(val);
  if (lane == 0) shared[warp] = val;
  __syncthreads();
  val = (lane < NUM_WARPS) ? shared[lane] : 0.0f;
  val = warp_reduce_sum<NUM_WARPS>(val);
  return val;
}

template<const int NUM_THREADS=128>
__device__ __forceinline__ float block_reduce_max(float val) {
  // always <= 32 warps per block (limited by 1024 threads per block)
  constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
  int warp = threadIdx.x / WARP_SIZE;
  int lane = threadIdx.x % WARP_SIZE;
  static __shared__ float shared[NUM_WARPS];
  
  val = warp_reduce_max<WARP_SIZE>(val);
  if (lane == 0) shared[warp] = val;
  __syncthreads();
  val = (lane < NUM_WARPS) ? shared[lane] : -FLT_MAX;
  val = warp_reduce_max<NUM_WARPS>(val);
  return val;
}

warp reduce几乎已经成为大部分reduce kernel的标准写法了,比如vLLM中,就是这种经典的写法。所以,先搞懂warp reduce(也就是搞懂各种warp functions的用法),再去写其他kernel,思路就会容易很多。需要注意的是,warp函数处理的是寄存器上的数据,也就是说,此时,没必要先加载数据到smem,再进行reduce,直接加载到寄存器即可(以前犯过这个小错误...)。Warp Functions建议参考:jhang:CUDA编程入门之Warp-Level Primitives

0x04 block all reduce + vec4 (©️back👆🏻)

// Block All Reduce Sum
// grid(N/128), block(128)
// a: Nx1, y=sum(a)
template<const int NUM_THREADS = 128>
__global__ void block_all_reduce_sum(float* a, float* y, int N) {
  int tid = threadIdx.x;
  int idx = blockIdx.x * NUM_THREADS + tid;
  constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
  __shared__ float reduce_smem[NUM_WARPS];
  // keep the data in register is enougth for warp operaion.
  float sum = (idx < N) ? a[idx] : 0.0f;
  int warp = tid / WARP_SIZE;
  int lane = tid % WARP_SIZE;
  // perform warp sync reduce.
  sum = warp_reduce_sum<WARP_SIZE>(sum);
  // warp leaders store the data to shared memory.
  if (lane == 0) reduce_smem[warp] = sum;
  __syncthreads(); // make sure the data is in shared memory.
  // the first warp compute the final sum.
  sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
  if (warp == 0) sum = warp_reduce_sum<NUM_WARPS>(sum);
  if (tid == 0) atomicAdd(y, sum);
}

// Block All Reduce Sum + float4
// grid(N/128), block(128/4)
// a: Nx1, y=sum(a)
template<const int NUM_THREADS = 128/4>
__global__ void block_all_reduce_sum_vec4(float* a, float* y, int N) {
  int tid = threadIdx.x;
  int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
  constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
  __shared__ float reduce_smem[NUM_WARPS];

  float4 reg_a = FLOAT4(a[idx]);
  // keep the data in register is enougth for warp operaion.
  float sum = (idx < N) ? (reg_a.x + reg_a.y + reg_a.z + reg_a.w) : 0.0f;
  int warp = tid / WARP_SIZE;
  int lane = tid % WARP_SIZE;
  // perform warp sync reduce.
  sum = warp_reduce_sum<WARP_SIZE>(sum);
  // warp leaders store the data to shared memory.
  if (lane == 0) reduce_smem[warp] = sum;
  __syncthreads(); // make sure the data is in shared memory.
  // the first warp compute the final sum.
  sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
  if (warp == 0) sum = warp_reduce_sum<NUM_WARPS>(sum);
  if (tid == 0) atomicAdd(y, sum);
}

block all reduce是在warp reduce的基础上进行的,reduce_smem这部分的共享内存申请无法避免,这是用来同步每个warp之间得到局部结果。注意,最后,还需要atomicAdd做一个block级别的原子操作,以得到全局的和。float4向量化优化访存,可以减缓WarpScheduler发送指令的压力。

0x05 sgemv k32/k128/k16 kernel (©️back👆🏻)

// SGEMV: Warp SGEMV K32
// 假设K为32的倍数,每个warp负责一行
// grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
__global__ void sgemv_k32(float* a, float* x, float* y, int M, int K) {
  int tx = threadIdx.x;         // 0~31
  int ty = threadIdx.y;         // 0~4
  int bx = blockIdx.x;          // 0~M/4
  int lane = tx % WARP_SIZE;    // 0~31
  int m = bx * blockDim.y + ty; // (0~M/4) * 4 + (0~3)
  if (m < M) {
    float sum = 0.0f;
    int NUM_WARPS = (K + WARP_SIZE - 1) / WARP_SIZE;
    #pragma unroll
    for (int w = 0; w < NUM_WARPS; ++w) {
      // 若NUM_WARPS>=2,先将当前行的数据累加到第一个warp中
      int k = w * WARP_SIZE + lane;
      sum += a[m * K + k] * x[k];
    }
    sum = warp_reduce_sum<WARP_SIZE>(sum);
    if (lane == 0) y[m] = sum;
  }
}

// SGEMV: Warp SGEMV K128 + Vec4
// 假设K为128的倍数 float4
// grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
__global__ void sgemv_k128(float* a, float* x, float* y, int M, int K) {
  // 每个线程负责4个元素,一个warp覆盖128个元素
  int tx = threadIdx.x;         // 0~31
  int ty = threadIdx.y;         // 0~3
  int bx = blockIdx.x;          // 0~M/4
  int lane = tx % WARP_SIZE;    // 0~31
  int m = blockDim.y * bx + ty; // (0~M/4) * 4 + (0~3)
  
  if (m < M) {
    float sum = 0.0f;
    // process 4*WARP_SIZE elements per warp.
    int NUM_WARPS = (((K + WARP_SIZE - 1) / WARP_SIZE) + 4 - 1) / 4;
    #pragma unroll
    for (int w = 0; w < NUM_WARPS; ++w) {
      int k = (w * WARP_SIZE + lane) * 4;
      float4 reg_x = FLOAT4(x[k]);
      float4 reg_a = FLOAT4(a[m * K + k]);
      sum += (reg_a.x * reg_x.x + reg_a.y * reg_x.y 
            + reg_a.z * reg_x.z + reg_a.w * reg_x.w);
    }
    sum = warp_reduce_sum<WARP_SIZE>(sum);
    if(lane == 0) y[m] = sum;
  }
}

// SGEMV: Warp SGEMV K16
// 假设K为16 < 32,每个warp负责2行,每行有16个元素
// NUM_THREADS=128, NUM_WARPS=NUM_THREADS/WARP_SIZE;
// NUM_ROWS=NUM_WARPS * ROW_PER_WARP, grid(M/NUM_ROWS), block(32,NUM_WARPS)
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
template<const int ROW_PER_WARP = 2> 
__global__ void sgemv_k16(float* A, float* x, float* y, int M, int K) {
  constexpr int K_WARP_SIZE = (WARP_SIZE + ROW_PER_WARP - 1) / ROW_PER_WARP;
  int tx = threadIdx.x;       // 0~31
  int ty = threadIdx.y;       // 0~NUM_WARPS
  int bx = blockIdx.x;        // 0~M/NUM_ROWS (NUM_ROWS=NUM_WARPS * ROW_PER_WARP)
  int lane = tx % WARP_SIZE;  // 0~31
  int k = lane % K_WARP_SIZE; // 0~15
  // gloabl row of a: MxK and y:Mx1, blockDim.y=NUM_WARPS
  int m = (blockDim.y * bx + ty) * ROW_PER_WARP + lane / K_WARP_SIZE;
  if (m < M) {
    float sum = A[m * K + k] * x[k];
    sum = warp_reduce_sum<K_WARP_SIZE>(sum);
    // 注意是k == 0,而不是lane == 0
    if(k == 0) y[m] = sum; 
  }
}

估计有些大佬倒立都能写sgemv的各种优化版了,核心思路其实也是基于warp reduce,考虑K的不同情况进行优化。本文的sgemv kernel修改自:有了琦琦的棍子:深入浅出GPU优化系列:gemv优化

0x06 dot product, dot product + vec4 (©️back👆🏻)

// Dot Product
// grid(N/128), block(128)
// a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
template<const int NUM_THREADS = 128>
__global__ void dot(float* a, float* b, float* y, int N) {
  int tid = threadIdx.x;
  int idx = blockIdx.x * NUM_THREADS + tid;
  constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
  __shared__ float reduce_smem[NUM_WARPS];

  // keep the data in register is enougth for warp operaion.
  float prod = (idx < N) ? a[idx] * b[idx] : 0.0f;
  int warp = tid / WARP_SIZE;
  int lane = tid % WARP_SIZE;
  // perform warp sync reduce.
  prod = warp_reduce_sum<WARP_SIZE>(prod);
  // warp leaders store the data to shared memory.
  if (lane == 0) reduce_smem[warp] = prod;
  __syncthreads(); // make sure the data is in shared memory.
  // the first warp compute the final sum.
  prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
  if (warp == 0) prod = warp_reduce_sum<NUM_WARPS>(prod);
  if (tid == 0) atomicAdd(y, prod);
}

// Dot Product + Vec4
// grid(N/128), block(128/4)
// a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
template<const int NUM_THREADS = 128/4>
__global__ void dot_vec4(float* a, float* b, float* y, int N) {
  int tid = threadIdx.x;
  int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
  constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
  __shared__ float reduce_smem[NUM_WARPS];

  float4 reg_a = FLOAT4(a[idx]);
  float4 reg_b = FLOAT4(b[idx]);
  float prod = (idx < N) ? (reg_a.x * reg_b.x + reg_a.y * reg_b.y 
                          + reg_a.z * reg_b.z + reg_a.w * reg_b.w) : 0.0f;
  int warp = tid / WARP_SIZE;
  int lane = tid % WARP_SIZE;
  // perform warp sync reduce.
  prod = warp_reduce_sum<WARP_SIZE>(prod);
  // warp leaders store the data to shared memory.
  if (lane == 0) reduce_smem[warp] = prod;
  __syncthreads(); // make sure the data is in shared memory.
  // the first warp compute the final sum.
  prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
  if (warp == 0) prod = warp_reduce_sum<NUM_WARPS>(prod);
  if (tid == 0) atomicAdd(y, prod);
}

dot product kernel的核心就是block reduce,不多说了。

0x07 elementwise, elementwise + vec4 (©️back👆🏻)

// ElementWise Add  
// grid(N/128), block(128)
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add(float* a, float* b, float* c, int N) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < N) c[idx] = a[idx] + b[idx];
}

// ElementWise Add + Vec4
// grid(N/128), block(128/4)
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add_vec4(float* a, float* b, float* c, int N) {
  int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
  if (idx < N) {
    float4 reg_a = FLOAT4(a[idx]);
    float4 reg_b = FLOAT4(b[idx]);
    float4 reg_c;
    reg_c.x = reg_a.x + reg_b.x;
    reg_c.y = reg_a.y + reg_b.y;
    reg_c.z = reg_a.z + reg_b.z;
    reg_c.w = reg_a.w + reg_b.w;
    FLOAT4(c[idx]) = reg_c;
  }
}

elementwise可以考虑加点向量化进行访存优化。

0x08 histogram, histogram + vec4

// Histogram
// grid(N/128), block(128)
// a: Nx1, y: count histogram
__global__ void histogram(int* a, int* y, int N) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < N) atomicAdd(&(y[a[idx]]), 1);
}

// Histogram + Vec4
// grid(N/128), block(128/4)
// a: Nx1, y: count histogram
__global__ void histogram_vec4(int* a, int* y, int N) {
  int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
  if (idx < N) {
    int4 reg_a = INT4(a[idx]);
    atomicAdd(&(y[reg_a.x]), 1);
    atomicAdd(&(y[reg_a.y]), 1);
    atomicAdd(&(y[reg_a.z]), 1);
    atomicAdd(&(y[reg_a.w]), 1);
  }
}

统计频数直方图,很简单,两行代码搞定。

0x09 softmax, softmax + vec4 (grid level memory fence) (©️back👆🏻)

// Softmax x: N, y: N
// grid(N/128), block(K=128)
template<const int NUM_THREADS = 128>
__global__ void softmax(float* x, float* y, float* total, int N) {
  const int tid = threadIdx.x;
  const int idx = blockIdx.x * blockDim.x + tid; 
  constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
  __shared__ float reduce_smem[NUM_WARPS];
  
  float sum = (idx < N) ? expf(x[idx]) : 0.0f;
  int warp = tid / WARP_SIZE;
  int lane = tid % WARP_SIZE;
  sum = warp_reduce_sum<WARP_SIZE>(sum);
  if (lane == 0) reduce_smem[warp] = sum;
  __syncthreads();
  // compute the final sum in each warp
  sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
  sum = warp_reduce_sum<NUM_WARPS>(sum); // sum(e^x_0,...,e^x_n-1)
  // get the total sum of all blocks.
  if (tid == 0) atomicAdd(total, sum);
  __threadfence(); // grid level memory fence 注意这里需要网格级别的内存同步
  // e^x_i/sum(e^x_0,...,e^x_n-1) 
  if (idx < N) y[idx] = block_smem[tid] / (*total); 
}

// Softmax x: N, y: N
// grid(N/128), block(K=128)
template<const int NUM_THREADS = 128>
__global__ void softmax_v2(float* x, float* y, float* total, int N) {
  const int tid = threadIdx.x;
  const int idx = blockIdx.x * blockDim.x + tid; 
  
  float exp_val = (idx < N) ? expf(x[idx]) : 0.0f;
  float sum = block_reduce_sum<NUM_THREADS>(exp_val);
  // get the total sum of all blocks.
  if (tid == 0) atomicAdd(total, sum);
  __threadfence(); // grid level memory fence  注意这里需要网格级别的内存同步
  // e^x_i/sum(e^x_0,...,e^x_n-1) 
  if (idx < N) y[idx] = exp_val / (*total); 
}

// Softmax Vec4 x: N, y: N
// grid(N/128), block(128/4)
template<const int NUM_THREADS = 128/4>
__global__ void softmax_v2_vec4(float* x, float* y, float* total, int N) {
  const int tid = threadIdx.x;
  const int idx = (blockIdx.x * blockDim.x + tid) * 4; 
  
  float4 reg_x = FLOAT4(x[idx]);
  float4 reg_exp;
  reg_exp.x = (idx < N) ? expf(reg_x.x) : 0.0f;
  reg_exp.y = (idx < N) ? expf(reg_x.y) : 0.0f;
  reg_exp.z = (idx < N) ? expf(reg_x.z) : 0.0f;
  reg_exp.w = (idx < N) ? expf(reg_x.w) : 0.0f;
  float exp_val = (reg_exp.x + reg_exp.y + reg_exp.z + reg_exp.w);
  float sum = block_reduce_sum<NUM_THREADS>(exp_val);
  // get the total sum of all blocks.
  if (tid == 0) atomicAdd(total, sum);
  __threadfence(); // grid level memory fence  注意这里需要网格级别的内存同步
  // e^x_i/sum(e^x_0,...,e^x_n-1) 
  if (idx < N) {
    float4 reg_y;
    reg_y.x = reg_exp.x / (*total);
    reg_y.y = reg_exp.y / (*total);
    reg_y.z = reg_exp.z / (*total);
    reg_y.w = reg_exp.w / (*total);
    FLOAT4(y[idx]) = reg_y; 
  }
}

softmax稍微要注意的就是内存同步的问题,这里,你需要做一个网格级别的同步,而不能仅仅是block级别,否则拿不到全局的exp sum作为分母项。因此使用 __threadfence 这个网格及内存同步操作。不过效率我还没测过,实在要高效的话,可能得整成FA2那样的 1-pass + online softmax的实现。不过,如果是面试的话,就不要太为难自己了...,但是FA1/FA2的论文很经典,强烈建议多读几遍。

0x0a sigmoid, sigmoid + vec4 (©️back👆🏻)

// Sigmoid x: N, y: N y=1/(1+exp(-x))
// grid(N/128), block(K=128) 
__global__ void sigmoid(float* x, float* y, int N) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < N) y[idx] = 1.0f / (1.0f + expf(-x[idx]));
}

// Sigmoid x: N, y: N y=1/(1+exp(-x)) Vec4
// grid(N/128), block(128/4)
__global__ void sigmoid_vec4(float* x, float* y, int N) {
  int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
  if (idx < N) {
    float4 reg_x = FLOAT4(x[idx]);
    float4 reg_y;
    reg_y.x = 1.0f / (1.0f + expf(-reg_x.x));
    reg_y.y = 1.0f / (1.0f + expf(-reg_x.y));
    reg_y.z = 1.0f / (1.0f + expf(-reg_x.z));
    reg_y.w = 1.0f / (1.0f + expf(-reg_x.w));
    FLOAT4(y[idx]) = reg_y;
  }
}

0x0b relu, relu + vec4 (©️back👆🏻)

// Relu x: N, y: N y=max(0,x)
// grid(N/128), block(K=128) 
__global__ void relu(float* x, float* y, int N) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < N) y[idx] = fmaxf(0.0f, x[idx]);
}

// Relu x: N, y: N y=max(0,x) Vec4
// grid(N/128/4), block(128/4) 
__global__ void relu_vec4(float* x, float* y, int N) {
  int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
  if (idx < N) {
    float4 reg_x = FLOAT4(x[idx]);
    float4 reg_y;
    reg_y.x = fmaxf(0.0f, reg_x.x);
    reg_y.y = fmaxf(0.0f, reg_x.y);
    reg_y.z = fmaxf(0.0f, reg_x.z);
    reg_y.w = fmaxf(0.0f, reg_x.w);
    FLOAT4(y[idx]) = reg_y;
  }
}

0x0c layer_norm, layer_norm + vec4 (©️back👆🏻)

// Layer Norm: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
// mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
// grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g + b (g: scale, b: bias)
template<const int NUM_THREADS=128>
__global__ void layer_norm(float* x, float* y, float g, float b, int N, int K) {
  int tid = threadIdx.x; // 0..K-1
  int bid = blockIdx.x; // 0..N-1
  int idx = bid * blockDim.x + threadIdx.x;
  const float epsilon = 1e-5f;

  __shared__ float s_mean; // shared within block
  __shared__ float s_variance; // shared within block
  float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
  float sum = block_reduce_sum<NUM_THREADS>(value);
  if (tid == 0) s_mean = sum / (float) K;
  // wait for s_mean in shared memory to be ready for all threads
  __syncthreads();
  float variance = (value - s_mean) * (value - s_mean);
  variance = block_reduce_sum<NUM_THREADS>(variance);
  if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
  // wait for s_variance in shared memory to be ready for all threads
  __syncthreads();
  if (idx < N * K) y[idx] = ((value - s_mean) * s_variance) * g + b;
}

// Layer Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
// mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
// grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g + b (g: scale, b: bias)
template<const int NUM_THREADS=128/4>
__global__ void layer_norm_vec4(float* x, float* y, float g, float b, int N, int K) {
  int tid = threadIdx.x; // 0..K-1
  int bid = blockIdx.x; // 0..N-1
  int idx = (bid * blockDim.x + threadIdx.x) * 4;
  const float epsilon = 1e-5f;

  __shared__ float s_mean; // shared within block
  __shared__ float s_variance; // shared within block
  float4 reg_x = FLOAT4(x[idx])
  float value = (idx < N * K) ? (reg_x.x + reg_x.y 
                               + reg_x.z + reg_x.w) : 0.0f;
  float sum = block_reduce_sum<NUM_THREADS>(value);
  if (tid == 0) s_mean = sum / (float) K;
  // wait for s_mean in shared memory to be ready for all threads
  __syncthreads();
  float4 reg_x_hat;
  reg_x_hat.x = reg_x.x - s_mean;
  reg_x_hat.y = reg_x.y - s_mean;
  reg_x_hat.z = reg_x.z - s_mean;
  reg_x_hat.w = reg_x.w - s_mean;
  float variance = reg_x_hat.x * reg_x_hat.x + reg_x_hat.y * reg_x_hat.y 
                 + reg_x_hat.z * reg_x_hat.z + reg_x_hat.w * reg_x_hat.w;
  variance = block_reduce_sum<NUM_THREADS>(variance);
  if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
  // wait for s_variance in shared memory to be ready for all threads
  __syncthreads();
  float4 reg_y;
  reg_y.x = reg_x_hat.x * s_variance * g + b;
  reg_y.y = reg_x_hat.y * s_variance * g + b;
  reg_y.z = reg_x_hat.z * s_variance * g + b;
  reg_y.w = reg_x_hat.w * s_variance * g + b;
  if (idx < N * K) FLOAT4(y[idx]) = reg_y;
}

layer norm实现的核心同样也是block reduce和warp reduce,然后再整点向量化...

0x0d rms_norm, rms_norm + vec4 (©️back👆🏻)

// RMS Norm: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
// 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
// grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g (g: scale)
template<const int NUM_THREADS=128>
__global__ void rms_norm(float* x, float* y, float g, int N, int K) {
  int tid = threadIdx.x; // 0..K-1
  int bid = blockIdx.x; // 0..N-1
  int idx = bid * blockDim.x + threadIdx.x;
  const float epsilon = 1e-5f;

  __shared__ float s_variance; // shared within block
  float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
  float variance = value * value;
  variance = block_reduce_sum<NUM_THREADS>(variance);
  if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
  // wait for s_variance in shared memory to be ready for all threads
  __syncthreads(); 
  if (idx < N * K) y[idx] = (value * s_variance) * g;
}

// RMS Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
// 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
// grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g (g: scale)
template<const int NUM_THREADS=128/4>
__global__ void rms_norm_vec4(float* x, float* y, float g, int N, int K) {
  int tid = threadIdx.x; // 0..K-1
  int bid = blockIdx.x; // 0..N-1
  int idx = (bid * blockDim.x + threadIdx.x) * 4;
  const float epsilon = 1e-5f;

  __shared__ float s_variance; // shared within block
  float4 reg_x = FLOAT4(x[idx]);
  float variance = (idx < N * K) ? (reg_x.x * reg_x.x + reg_x.y * reg_x.y 
                                  + reg_x.z * reg_x.z + reg_x.w * reg_x.w) : 0.0f;
  variance = block_reduce_sum<NUM_THREADS>(variance);
  if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
  // wait for s_variance in shared memory to be ready for all threads
  __syncthreads(); 
  float4 reg_y;
  reg_y.x = reg_x.x * s_variance * g;
  reg_y.y = reg_x.y * s_variance * g;
  reg_y.z = reg_x.z * s_variance * g;
  reg_y.w = reg_x.w * s_variance * g;
  if (idx < N * K) FLOAT4(y[idx]) = reg_y;
}

rms norm实现的核心同样也是block reduce和warp reduce...,然后再加点float4向量化什么的。

struct Box {
  float x1, y1, x2, y2, score;
  float area() const {return (std::abs(x2 - x1 + 1)) * std::abs(y2 - y1 + 1); }
  float iou_of(const Box& other) const{
    float inner_x1 = x1 > other.x1 ? x1 : other.x1;
    float inner_y1 = y1 > other.y1 ? y1 : other.y1;
    float inner_x2 = x2 < other.x2 ? x2 : other.x2;
    float inner_y2 = y2 < other.y2 ? y2 : other.y2;
    float inner_h = inner_y2 - inner_y1 + 1.0f;
    float inner_w = inner_x2 - inner_x1 + 1.0f;
    float inner_area = inner_h * inner_w;
    return (inner_area / (area() + tbox.area() - inner_area));
  }
}
void hard_nms(std::vector<Box> &input, std::vector<Box> &output, float iou_threshold){
  if (input.empty()) return;
  std::sort(input.begin(), input.end(),[](Box& a, Box& b) { return a.score > b.score; });
  int box_num = input.size();
  std::vector<int> merged(box_num, 0);
  for (int i = 0; i < box_num; ++i) {
    if (merged[i]) continue;
    merged[i] = 1;
    for (int j = i + 1; j < box_num; ++j) {
      if (merged[j]) continue;
      float iou = input[i].iou_of(input[j]);
      if (iou > iou_threshold) merged[j] = 1;
    }
    output.push_back(input[i]);
  }
}

CV相关的经常会要手撕NMS,也记录下。

0x0f 总结 (©️back👆🏻)

可以发现,大部分kernel的基本写法都是依赖warp reduce和block reduce的,基本上只要熟练应用warp functions各种场景的写法,应该问题不大;softmax需要考虑网格级同步的问题,或者online softmax以及FlashAttention;sgemm的优化是个很大的课题,不是案例中写的这么简单,但是入门的话,基本就是tiling的**以及如何做索引之间的mapping;sgemv的优化则主要考虑K不同的值(因为M为1了),比如K=16,64,128等情况下,如何按照warp来处理;relu、sigmoid等都是elementwise的操作,很好实现,可以再考虑加点向量化优化访存;layer norm和rms norm在数学上其实也是挺清晰简单的,落实到cuda kernel时,只要按照逐个token来处理,headdim没有超过1024的情况下(一个block最多可以放1024个threads),可以放到一个block处理,这样并行化就很好写。当然,核心还是warp reduce和block reduce;NMS是乱入的,没有CUDA版本,别问了...

©️License

GNU General Public License v3.0

References

🎉Contribute

🌟如果觉得有用,不妨给个🌟👆🏻Star支持一下吧~

cuda-learn-notes's People

Contributors

deftruth avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar

cuda-learn-notes's Issues

您好,请教一个关于代码中reduce相关的问题

  1. sum = warp_reduce_sum<NUM_WARPS>(sum);
  2. if(warp==0) sum = warp_reduce_sum<NUM_WARPS>(sum);

0x03 warp/block reduce sum/max 、0x09 softmax, softmax + vec4
做final sum的时候,用的是第一种形式
0x04 block all reduce + vec4
而用的是第二种形式
我的理解是,最后final sum的时候是不是应该用第二种形式?最后都集中在第一个warp束中。
感谢!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.