Code Monkey home page Code Monkey logo

gs-rest-service-cors's Introduction

tags projects
rest
cors
spring-framework

This guide walks you through the process of creating a "hello world" RESTful web service with Spring that includes headers for Cross-Origin Resource Sharing (CORS) in the response.

What you’ll build

You’ll build a service that will accept HTTP GET requests at:

http://localhost:8080/greeting

and respond with a JSON representation of a greeting:

{"id":1,"content":"Hello, World!"}

You can customize the greeting with an optional name parameter in the query string:

http://localhost:8080/greeting?name=User

The name parameter value overrides the default value of "World" and is reflected in the response:

{"id":1,"content":"Hello, User!"}

This service differs slightly from the one described in Building a RESTful Web Service in that it will have a filter that adds CORS headers to the response.

Create a resource representation class

Now that you’ve set up the project and build system, you can create your web service.

Begin the process by thinking about service interactions.

The service will handle GET requests for /greeting, optionally with a name parameter in the query string. The GET request should return a 200 OK response with JSON in the body that represents a greeting. It should look something like this:

{
    "id": 1,
    "content": "Hello, World!"
}

The id field is a unique identifier for the greeting, and content is the textual representation of the greeting.

To model the greeting representation, you create a resource representation class. Provide a plain old java object with fields, constructors, and accessors for the id and content data:

src/main/java/hello/Greeting.java

link:complete/src/main/java/hello/Greeting.java[role=include]
Note
As you see in steps below, Spring uses the Jackson JSON library to automatically marshal instances of type Greeting into JSON.

Next you create the resource controller that will serve these greetings.

Create a resource controller

In Spring’s approach to building RESTful web services, HTTP requests are handled by a controller. These components are easily identified by the @Controller annotation, and the GreetingController below handles GET requests for /greeting by returning a new instance of the Greeting class:

src/main/java/hello/GreetingController.java

link:complete/src/main/java/hello/GreetingController.java[role=include]

This controller is concise and simple, but there’s plenty going on under the hood. Let’s break it down step by step.

The @RequestMapping annotation ensures that HTTP requests to /greeting are mapped to the greeting() method.

Note
The above example does not specify GET vs. PUT, POST, and so forth, because @RequestMapping maps all HTTP operations by default. Use @RequestMapping(method=GET) to narrow this mapping.

@RequestParam binds the value of the query string parameter name into the name parameter of the greeting() method. This query string parameter is not required; if it is absent in the request, the defaultValue of "World" is used.

The implementation of the method body creates and returns a new Greeting object with id and content attributes based on the next value from the counter, and formats the given name by using the greeting template.

A key difference between a traditional MVC controller and the RESTful web service controller above is the way that the HTTP response body is created. Rather than relying on a view technology to perform server-side rendering of the greeting data to HTML, this RESTful web service controller simply populates and returns a Greeting object. The object data will be written directly to the HTTP response as JSON.

To accomplish this, the @ResponseBody annotation on the greeting() method tells Spring MVC that it does not need to render the greeting object through a server-side view layer, but that instead that the greeting object returned is the response body, and should be written out directly.

The Greeting object must be converted to JSON. Thanks to Spring’s HTTP message converter support, you don’t need to do this conversion manually. Because Jackson 2 is on the classpath, Spring’s MappingJackson2HttpMessageConverter is automatically chosen to convert the Greeting instance to JSON.

Filter requests for CORS

So that the RESTful web service will include CORS access control headers in its response, you’ll need to write a filter that adds those headers to the response. This SimpleCORSFilter class provides a simple implementation of such a filter:

src/main/java/hello/SimpleCORSFilter.java

link:complete/src/main/java/hello/SimpleCORSFilter.java[role=include]

As it is written, SimpleCORSFilter responds to all requests with certain Access-Control-* headers. In this case, the headers are set to allow POST, GET, OPTIONS, or DELETE requests from clients originated from any host. The results of a preflight request may be cached for up to 3,600 seconds (1 hour). And the request may include an x-requested-with header.

Note
This is only a simple CORS filter. A more sophisticated CORS filter may set the header values differently for a given client and/or resource being requested. Or it may not set the headers at all in certain cases.

Make the application executable

Although it is possible to package this service as a traditional WAR file for deployment to an external application server, the simpler approach demonstrated below creates a standalone application. You package everything in a single, executable JAR file, driven by a good old Java main() method. Along the way, you use Spring’s support for embedding the Tomcat servlet container as the HTTP runtime, instead of deploying to an external instance.

src/main/java/hello/Application.java

link:complete/src/main/java/hello/Application.java[role=include]

@SpringBootApplication is a convenience annotation that adds all of the following:

  • @Configuration tags the class as a source of bean definitions for the application context.

  • @EnableAutoConfiguration tells Spring Boot to start adding beans based on classpath settings, other beans, and various property settings.

  • Normally you would add @EnableWebMvc for a Spring MVC app, but Spring Boot adds it automatically when it sees spring-webmvc on the classpath. This flags the application as a web application and activates key behaviors such as setting up a DispatcherServlet.

  • @ComponentScan tells Spring to look for other components, configurations, and services in the the hello package, allowing it to find the HelloController.

The main() method uses Spring Boot’s SpringApplication.run() method to launch an application. Did you notice that there wasn’t a single line of XML? No web.xml file either. This web application is 100% pure Java and you didn’t have to deal with configuring any plumbing or infrastructure.

Logging output is displayed. The service should be up and running within a few seconds.

Test the service

Now that the service is up, visit http://localhost:8080/greeting, where you see:

{"id":1,"content":"Hello, World!"}

Provide a name query string parameter with http://localhost:8080/greeting?name=User. Notice how the value of the content attribute changes from "Hello, World!" to "Hello User!":

{"id":2,"content":"Hello, User!"}

This change demonstrates that the @RequestParam arrangement in GreetingController is working as expected. The name parameter has been given a default value of "World", but can always be explicitly overridden through the query string.

Notice also how the id attribute has changed from 1 to 2. This proves that you are working against the same GreetingController instance across multiple requests, and that its counter field is being incremented on each call as expected.

Now to test that the CORS headers are in place and allowing a Javascript client from another origin to access the service, you’ll need to create a Javascript client to consume the service.

First, create a simple Javascript file named hello.js with the following content:

public/hello.js

link:complete/public/hello.js[role=include]

This script uses jQuery to consume the REST service at http://localhost:8080/greeting. It is loaded by index.html as shown here:

public/index.html

link:complete/public/index.html[role=include]
Note
This is essentially the REST client created in Consuming a RESTful Web Service with jQuery, modified slightly to consume the service running on localhost, port 8080. See that guide for more details on how this client was developed.

You can now run the client using the Spring Boot CLI (Command Line Interface). Spring Boot includes an embedded Tomcat server, which offers a simple approach to serving web content. See Building an Application with Spring Boot for more information about installing and using the CLI.

In order to serve static content from Spring Boot’s embedded Tomcat server, you’ll also need to create a minimal amount of web application code so that Spring Boot knows to start Tomcat. The following app.groovy script is sufficient for letting Spring Boot know that you want to run Tomcat:

app.groovy

link:complete/app.groovy[role=include]

Because the REST service is already running on localhost, port 8080, you’ll need to be sure to start the client from another server and/or port. This will not only avoid a collision between the two applications, but will also ensure that the client code is served from a different origin than the service. To start the client running on localhost, port 9000:

spring run app.groovy -- --server.port=9000

Once the client starts, open http://localhost:9000 in your browser, where you should see:

Model data retrieved from the REST service is rendered into the DOM if the proper CORS headers are in the response.

If the service response includes the CORS headers, then the ID and content will be rendered into the page. But if the CORS headers are missing (or insufficiently defined for the client), then the browser will fail the request and the values will not be rendered into the DOM:

The browser will fail the request if the CORS headers are missing from the response. No data will be rendered into the DOM.

Summary

Congratulations! You’ve just developed a RESTful web service including Cross-Origin Resource Sharing with Spring.

gs-rest-service-cors's People

Contributors

gregturn avatar habuma avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.