Code Monkey home page Code Monkey logo

quantumgrn's Introduction

QuantumGRN

A quantum circuit model for inferring gene regulatory networks with application to single-cell transcriptomic data. Reference in the manuscript.

we introduce a quantum circuit model for inferring gene regulatory networks (GRNs) from single-cell transcriptomic data. The model employs qubit entanglement to simulate interactions between genes, resulting in competitive performance and promising potential for further exploration. We applied our quantum GRN modeling approach to single-cell transcriptomic data from human lymphoblastoid cells, focusing on a small set of genes involved in innate immunity regulation. Our quantum circuit model successfully predicted the presence and absence of regulatory interactions between genes, while also estimating the strength of these interactions. We argue that the application of quantum computing in biology has the potential to provide a better understanding of single-cell GRNs by more effectively approaching the relationship between fully interconnected genes compared to conventional statistical methods such as correlation and regression. Our results encourage further investigation into the creation of quantum algorithms that utilize single-cell data, paving the way for future research into the intersection of quantum computing and biology.

Installation (test Pypi)

Use the package manage pip to install QuantumGRN

pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple QuantumGRN

Run example

Run the examples file using QuantumGRN package

cd test
python 02_example.py

Usage

QuantumGRN is used as normal package,

import numpy as numpy
import pandas as pd
from qscgrn import *

df = pd.read_csv("dataset/expr_matrix_pearsonresidual_7.txt", delimiter='\t')
df = df.set_index('genes').T

ncells, ngenes = df.shape
df = qsc_order_gene(df)
genes = df.columns.to_list()
p_obs = qsc_distribution(df)
activation = qsc_activation_ratios(df)

theta = theta_init(genes, activation_ratios=activation)
edges = edges_init(genes)
qgrn = model(ncells, genes, theta, edges, p_obs)
qgrn.train()

draw_network(genes, edges, qgrn.theta, filename="qgrn_network.png")

More detailed code in the tutorials directory

Contributing

Pull requests are welcome.

License

MIT

quantumgrn's People

Contributors

jamesjcai avatar cristhianroman667 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.