Code Monkey home page Code Monkey logo

short-read-tax-assignment's Introduction

TAX CREdiT: TAXonomic ClassifieR Evaluation Tool

Build Status

A standardized and extensible evaluation framework for taxonomic classifiers

To view static versions of the reports , start here.

Environment

This repository contains python-3 code and Jupyter notebooks, but some taxonomy assignment methods (e.g., using QIIME-1 legacy methods) may require different python or software versions. Hence, we use conda parallel environments to support comparison of myriad methods in a single framework.

The first step is to install conda and install QIIME2 following the instructions provided here.

An example of how to load different environments to support other methods can be see in the QIIME-1 taxonomy assignment notebook.

Setup and install

The library code and IPython Notebooks are then installed as follows:

git clone https://github.com/gregcaporaso/tax-credit.git
cd tax-credit/
pip install .

Finally, download and unzip the reference databases:

wget https://unite.ut.ee/sh_files/sh_qiime_release_20.11.2016.zip
wget ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
unzip sh_qiime_release_20.11.2016.zip
tar -xzf gg_13_8_otus.tar.gz

Equipment

The analyses included here can all be run in standard, modern laptop, provided you don't mind waiting a few hours on the most memory-intensive step (taxonomy classification of millions of sequences). With the exception of the q2-feature-classifier naive-bayes* classifier sweeps, which were run on a high-performance cluster, all analyses presented in tax-credit were run in a single day using a MacBook Pro with the following specifications: OS OS X 10.11.6 "El Capitan" Processor 2.3 GHz Intel Core i7 Memory 8 GB 1600 MHz DDR3

If you intend to perform extensive parameter sweeps on a classifier (e.g., several hundred or more parameter combinations), you may want to consider running these analyses using cluster resources, if available.

Using the Jupyter Notebooks included in this repository

To view and interact with Jupyter Notebook, change into the /tax-credit/ipynb directory and run Jupyter Notebooks from the terminal with the command:

jupyter notebook index.ipynb

The notebooks menu should open in your browser. From the main index, you can follow the menus to browse different analyses, or use File --> Open from the notebook toolbar to access the full file tree.

Citing

A publication is on its way! For now, if you use any of the data or code included in this repository, please cite https://github.com/caporaso-lab/tax-credit

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.