Code Monkey home page Code Monkey logo

logo_sabinn_github

Table of Content

  1. Project Description
  2. Tensorflow Model
  3. Hardware Model
  4. Caravel Hardening

Motivation

Sophistication and complexity of artificial intelligence and its demand in healthcare applications have sparked our interest in developing efficient methods to design real-time biomedical systems for detection and prediction of symptoms of complex diseases or abnormalities. Sleep apnea is one of the leading causes of sudden death around the globe, particularly in neonatal infants and adults aged over 50 years and the methods of pre-screening and detecting such abnormality are still in progress. Various sensor technologies adopting artificial intelligence in detecting and predicting of sleep apnea have been developed in recent years leading to the rapid progress in biomedical research. Based on multiple literature reviews, we have developed the idea of integrating machine learning models onto hardware and designing a real-time sleep apnea detection system. By using our proposed energy efficient design technique called SABiNN (shift Accumulate Based Binarized Neural Network), where we are introducing a compact, energy efficient, smart, and portable system capable of detecting apnea in real-time.

Description

In this project we propose to design a Binary Neural Network (BiNN) model based digital signal processing circuit which is capable of detecting sleep apnea. The design-model takes in pre-processed digital data from two types of biomedical sensors: 1) single channel ECG sensor data and 2) blood oxygen saturation level: SpO2 to detect sleep apnea. Figure.1 showcases the block diagram of the overall system, and the red block indicates our targeted design element. The novelty of this design is the use of digital shifters instead of multipliers to reduce power consumption by 13x times 1. The proposed SABiNN technique is a significant improvement compared to the design method introduced in 2. According to Figure.1 our proposed trained BiNN inference module takes in digitally processed input dataset from the two sensors and results in binary output (1: sleep apnea and 0: absence of sleep apnea/normal condition).

System_overview Figure 1: Block Level Diagram of the Proposed Sleep Apnea Detection System

The FNN model was trained using data collected from open-source ApneaECG database from PhysionetBank 3 and a 4-hidden layer 2-(8-12-6-4)-1 model was developed which successfully detected apnea with over 87% accuracy shown in Figure .2. ReLU activation functions were used in the hidden layers and sigmoid function was used in the output layer. Full model parameters (fixed weights) were extracted and used in designing the digital hardware model. A typical neural network hardware accelerator uses multiply-accumulate (MAC) operation as its neuron unit which consumes majority of the power in the design. The proposed SABiNN method eliminates this high-power consumption issue by replacing multipliers with shifters in creating activation functions such as sigmoid and ReLU following the structure of piece-wise linear function design and converting the model's extracted weights in binary format which resulted in a Binary Neural Network (BiNN) from FNN. For performance and power consumption analyses we designed the entire model onto field-programmable gate array to study the reports and justify the proposed low power design scheme.

BiNN Figure 2: Graphical representation of Binary Neural Network (BiNN) with 4-hidden layers (8-12-6-4) and their associated activation functions

schematic

The schematic of the DeepSAC_sleep module included user_project_wrapper module is shown below fullschematic

Layout Design

The layout design without the caravel harnessing is given below

chip_without scale

Specifications

Parameter Value Unit
Die Area ~0.15 mm^2
(Cell/mm^2)/Core_util 1116510 ---
Cell count 8246 ---

Full Report can be found here Final Summary Report

Caravel Hardening

The layout design with the caravel integration (no fill)

caravel

Design Goal

The goal of this project is to design the classification block of the sleep apnea detection model on CMOS integrated circuit platform and study the power consumption rate of a machine learning inspired digital circuit design. We are predicting that the power consumption rate of the IC-chip will be no larger than 50uW. Successful design, analysis and fabrication of the proposed circuit will open new doors in future development and design of low-power, smart and wearable biomedical systems.

Team Members

  1. Omiya Hassan: Team Leader | Graduate Student, Dept of EECS, University of Missouri
  2. Riley Jackson: Member | Undergraduate Student, Dept of EECS, University of Missouri
  3. Dilruba Parvin: Member | Graduate Student, Dept of EECS, University of Missouri

If you have used the SABiNN model algorithm and code please cite the paper "O. Hassan, R. Thakker, T. Paul, D. Parvin, A. S. M. Mosa, S. K. Islam, "SABiNN: FPGA Implementation of Shift Accumulate Binary Neural Network Model for Real-Time Automatic Detection of Sleep Apnea." In 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-6). IEEE, 2022"

Footnotes

  1. O. Hassan, R. Thakker, T. Paul, D. Parvin, A. S. M. Mosa, S. K. Islam, "SABiNN: FPGA Implementation of Shift Accumulate Binary Neural Network Model for Real-Time Automatic Detection of Sleep Apnea." In 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-6). IEEE, 2022

  2. A. Hazarika, A. Jain, S. Poddar and H. Rahaman, “Shift and Accumulate Convolution Processing Unit,” TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp. 914-919, 2019.

  3. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, C. Mark, H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.” Circulation [Online]. 101 (23), pp. e215–e220, 2000

Omiya's Projects

caravel icon caravel

Caravel is a standard SoC hardness with on chip resources to control and read/write operations from a user-dedicated space.

sabinn icon sabinn

Config files for my GitHub profile.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.