Code Monkey home page Code Monkey logo

Comments (3)

carljm avatar carljm commented on June 11, 2024 4

I think this should be fixed on latest cinder/3.10? Let me know if not!

from cinder.

tekknolagi avatar tekknolagi commented on June 11, 2024

Try from __static__ import IntEnum and use that as the base

from cinder.

bennn avatar bennn commented on June 11, 2024

That works instead of object, but I still get the AssertionError from above. Line 9347 in emit_type_check etc.

Here's my current `deltablue_static_lib.py`:
# Copyright (c) Facebook, Inc. and its affiliates. (http://www.facebook.com)
"""
deltablue.py
============

Ported for the PyPy project.
Contributed by Daniel Lindsley

This implementation of the DeltaBlue benchmark was directly ported
from the `V8's source code`_, which was in turn derived
from the Smalltalk implementation by John Maloney and Mario
Wolczko. The original Javascript implementation was licensed under the GPL.

It's been updated in places to be more idiomatic to Python (for loops over
collections, a couple magic methods, ``OrderedCollection`` being a list & things
altering those collections changed to the builtin methods) but largely retains
the layout & logic from the original. (Ugh.)

.. _`V8's source code`: (https://github.com/v8/v8/blob/master/benchmarks/deltablue.js)
"""
from __future__ import annotations

import __static__

from __static__ import CheckedList, IntEnum, box, cast, cbool, clen, int64, inline
from typing import final


@inline
def stronger(s1: Strength, s2: Strength) -> cbool:
    return s1.strength < s2.strength

@inline
def weaker(s1: Strength, s2: Strength) -> cbool:
    return s1.strength > s2.strength

@inline
def weakest_of(s1: Strength, s2: Strength) -> Strength:
    return s1 if s1.strength > s2.strength else s2


@final
class Strength:
    def __init__(self, strength: int64, name: str) -> None:
        self.strength: int64 = strength
        self.name: str = name


    def next_weaker(self) -> Strength:
        return STRENGTHS[self.strength]


# This is a terrible pattern IMO, but true to the original JS implementation.
REQUIRED = Strength(0, "required")
STRONG_PREFERRED = Strength(1, "strongPreferred")
PREFERRED = Strength(2, "preferred")
STRONG_DEFAULT = Strength(3, "strongDefault")
NORMAL = Strength(4, "normal")
WEAK_DEFAULT = Strength(5, "weakDefault")
WEAKEST = Strength(6, "weakest")

STRENGTHS: CheckedList[Strength] = CheckedList[Strength]([
    WEAKEST,
    WEAK_DEFAULT,
    NORMAL,
    STRONG_DEFAULT,
    PREFERRED,
    # TODO: This looks like a bug in the original code. Shouldn't this be
    #       ``STRONG_PREFERRED? Keeping for porting sake...
    REQUIRED,
])


class Constraint(object):

    def __init__(self, strength: Strength) -> None:
        self.strength: Strength = strength

    def add_constraint(self) -> None:
        planner = get_planner()
        self.add_to_graph()
        planner.incremental_add(self)

    def satisfy(self, mark: int64) -> Constraint | None:
        planner = get_planner()
        self.choose_method(mark)

        if not self.is_satisfied():
            if self.strength == REQUIRED:
                print('Could not satisfy a required constraint!')

            return None

        self.mark_inputs(mark)
        out = self.output()
        overridden = out.determined_by

        if overridden is not None:
            overridden.mark_unsatisfied()

        out.determined_by = self

        if not planner.add_propagate(self, mark):
            print('Cycle encountered')

        out.mark = mark
        return overridden

    def destroy_constraint(self) -> None:
        planner = get_planner()
        if self.is_satisfied():
            planner.incremental_remove(self)
        else:
            self.remove_from_graph()

    def is_input(self) -> cbool:
        return False

    def mark_inputs(self, mark: int64) -> None:
        pass

    def inputs_known(self, mark: int64) -> cbool:
        return True

    def choose_method(self, mark: int64) -> None:
        pass

    def output(self) -> Variable:
        raise NotImplementedError()

    def execute(self) -> None:
        # The methods, THEY DO NOTHING.
        pass


class UrnaryConstraint(Constraint):

    def __init__(self, v: Variable, strength: Strength) -> None:
        Constraint.__init__(self, strength)
        self.my_output: Variable = v
        self.satisfied: cbool = False
        self.add_constraint()

    def add_to_graph(self) -> None:
        self.my_output.add_constraint(self)
        self.satisfied = False

    def choose_method(self, mark: int64) -> None:
        if self.my_output.mark != mark and \
           stronger(self.strength, self.my_output.walk_strength):
            self.satisfied = True
        else:
            self.satisfied = False

    def is_satisfied(self) -> cbool:
        return self.satisfied

    def output(self) -> Variable:
        # Ugh. Keeping it for consistency with the original. So much for
        # "we're all adults here"...
        return self.my_output

    def recalculate(self) -> None:
        self.my_output.walk_strength = self.strength
        self.my_output.stay = not self.is_input()

        if self.my_output.stay:
            self.execute()

    def mark_unsatisfied(self) -> None:
        self.satisfied = False

    def remove_from_graph(self) -> None:
        if self.my_output is not None:
            self.my_output.remove_constraint(self)
            self.satisfied = False


@final
class StayConstraint(UrnaryConstraint):
    pass

@final
class EditConstraint(UrnaryConstraint):

    def is_input(self) -> cbool:
        return True


class Direction(IntEnum):
    # Hooray for things that ought to be structs!
    NONE = 0
    FORWARD = 1
    BACKWARD = -1


class BinaryConstraint(Constraint):

    def __init__(self, v1: Variable, v2: Variable, strength: Strength) -> None:
        Constraint.__init__(self, strength)
        self.v1: Variable = v1
        self.v2: Variable = v2
        self.direction: Direction = Direction.NONE
        self.add_constraint()

    def choose_method(self, mark: int64) -> None:
        if self.v1.mark == mark:
            if self.v2.mark != mark and stronger(self.strength, self.v2.walk_strength):
                self.direction = Direction.FORWARD
            else:
                self.direction = Direction.BACKWARD

        if self.v2.mark == mark:
            if self.v1.mark != mark and stronger(self.strength, self.v1.walk_strength):
                self.direction = Direction.BACKWARD
            else:
                self.direction = Direction.NONE

        if weaker(self.v1.walk_strength, self.v2.walk_strength):
            if stronger(self.strength, self.v1.walk_strength):
                self.direction = Direction.BACKWARD
            else:
                self.direction = Direction.NONE
        else:
            if stronger(self.strength, self.v2.walk_strength):
                self.direction = Direction.FORWARD
            else:
                self.direction = Direction.BACKWARD

    def add_to_graph(self) -> None:
        self.v1.add_constraint(self)
        self.v2.add_constraint(self)
        self.direction = Direction.NONE

    def is_satisfied(self) -> cbool:
        return self.direction != Direction.NONE

    def mark_inputs(self, mark: int64) -> None:
        self.input().mark = mark

    def input(self) -> Variable:
        return self.v1 if self.direction == Direction.FORWARD else self.v2

    def output(self) -> Variable:
        return self.v2 if self.direction == Direction.FORWARD else self.v1

    def recalculate(self) -> None:
        ihn = self.input()
        out = self.output()
        out.walk_strength = weakest_of(self.strength, ihn.walk_strength)
        out.stay = ihn.stay

        if out.stay:
            self.execute()

    def mark_unsatisfied(self) -> None:
        self.direction = Direction.NONE

    def inputs_known(self, mark: int64) -> cbool:
        i = self.input()
        return i.mark == mark or i.stay or cbool(i.determined_by is None)

    def remove_from_graph(self):
        if self.v1 is not None:
            self.v1.remove_constraint(self)

        if self.v2 is not None:
            self.v2.remove_constraint(self)

        self.direction = Direction.NONE


@final
class ScaleConstraint(BinaryConstraint):

    def __init__(self, src: Variable, scale: Variable, offset: Variable, dest: Variable, strength: Strength) -> None:
        self.direction: Direction = Direction.NONE
        self.scale: Variable = scale
        self.offset: Variable = offset
        BinaryConstraint.__init__(self, src, dest, strength)

    def add_to_graph(self) -> None:
        BinaryConstraint.add_to_graph(self)
        self.scale.add_constraint(self)
        self.offset.add_constraint(self)

    def remove_from_graph(self):
        BinaryConstraint.remove_from_graph(self)

        if self.scale is not None:
            self.scale.remove_constraint(self)

        if self.offset is not None:
            self.offset.remove_constraint(self)

    def mark_inputs(self, mark: int64) -> None:
        BinaryConstraint.mark_inputs(self, mark)
        self.scale.mark = mark
        self.offset.mark = mark

    def execute(self) -> None:
        if self.direction == Direction.FORWARD:
            self.v2.value = self.v1.value * self.scale.value + self.offset.value
        else:
            self.v1.value = (
                self.v2.value - self.offset.value) / self.scale.value

    def recalculate(self) -> None:
        ihn = self.input()
        out = self.output()
        out.walk_strength = weakest_of(self.strength, ihn.walk_strength)
        out.stay = ihn.stay and self.scale.stay and self.offset.stay

        if out.stay:
            self.execute()


@final
class EqualityConstraint(BinaryConstraint):

    def execute(self) -> None:
        self.output().value = self.input().value


@final
class Variable(object):

    def __init__(self, name: str, initial_value: int64 = 0) -> None:
        self.name: str = name
        self.value: int64 = initial_value
        self.constraints: CheckedList[Constraint] = []
        self.determined_by: Constraint | None = None
        self.mark: int64 = 0
        self.walk_strength: Strength = WEAKEST
        self.stay: cbool = True

    def add_constraint(self, constraint: Constraint) -> None:
        self.constraints.append(constraint)

    def remove_constraint(self, constraint: Constraint) -> None:
        self.constraints.remove(constraint)

        if self.determined_by == constraint:
            self.determined_by = None


@final
class Planner(object):

    def __init__(self) -> None:
        self.current_mark: int64 = 0

    def incremental_add(self, constraint: Constraint) -> None:
        mark = self.new_mark()
        overridden = constraint.satisfy(mark)

        while overridden is not None:
            overridden = overridden.satisfy(mark)

    def incremental_remove(self, constraint: Constraint) -> None:
        out = constraint.output()
        constraint.mark_unsatisfied()
        constraint.remove_from_graph()
        unsatisfied = self.remove_propagate_from(out)
        strength = REQUIRED
        # Do-while, the Python way.
        repeat = True

        while repeat:
            for u in unsatisfied:
                if u.strength == strength:
                    self.incremental_add(u)

                strength = strength.next_weaker()

            repeat = strength != WEAKEST

    def new_mark(self) -> int64:
        x = self.current_mark + 1
        self.current_mark = x
        return self.current_mark

    def make_plan(self, sources: CheckedList[UrnaryConstraint]) -> Plan:
        mark = self.new_mark()
        plan = Plan()
        todo: CheckedList[Constraint] = [s for s in sources]

        while clen(todo):
            c = todo.pop(0)

            if c.output().mark != mark and c.inputs_known(mark):
                plan.add_constraint(c)
                c.output().mark = mark
                self.add_constraints_consuming_to(c.output(), todo)

        return plan

    def extract_plan_from_constraints(self, constraints: CheckedList[UrnaryConstraint]) -> Plan:
        sources: CheckedList[UrnaryConstraint] = []

        for c in constraints:
            if c.is_input() and c.is_satisfied():
                sources.append(c)

        return self.make_plan(sources)

    def add_propagate(self, c: Constraint, mark: int64) -> cbool:
        todo: CheckedList[Constraint] = []
        todo.append(c)

        while clen(todo):
            d = todo.pop(0)

            if d.output().mark == mark:
                self.incremental_remove(c)
                return False

            d.recalculate()
            self.add_constraints_consuming_to(d.output(), todo)

        return True

    def remove_propagate_from(self, out: Variable) -> CheckedList[Constraint]:
        out.determined_by = None
        out.walk_strength = WEAKEST
        out.stay = True
        unsatisfied: CheckedList[Constraint] = []
        todo: CheckedList[Variable] = []
        todo.append(out)

        while len(todo):
            v = todo.pop(0)

            cs = v.constraints
            for c in cs:
                if not c.is_satisfied():
                    unsatisfied.append(c)
            determining = v.determined_by

            for c in cs:
                if c != determining and c.is_satisfied():
                    c.recalculate()
                    todo.append(c.output())

        return unsatisfied

    def add_constraints_consuming_to(self, v: Variable, coll: CheckedList[Constraint]) -> None:
        determining = v.determined_by
        cc = v.constraints

        for c in cc:
            if c != determining and c.is_satisfied():
                # I guess we're just updating a reference (``coll``)? Seems
                # inconsistent with the rest of the implementation, where they
                # return the lists...
                coll.append(c)


@final
class Plan(object):

    def __init__(self) -> None:
        self.v: CheckedList[Constraint] = []

    def add_constraint(self, c: Constraint) -> None:
        self.v.append(c)

    def __len__(self):
        return len(self.v)

    def __getitem__(self, index):
        return self.v[index]

    def execute(self) -> None:
        for c in self.v:
            c.execute()


# Main

def recreate_planner() -> Planner:
    global planner
    planner = Planner()
    return planner


def get_planner() -> Planner:
    global planner
    return planner


def chain_test(n: int64) -> None:
    """
    This is the standard DeltaBlue benchmark. A long chain of equality
    constraints is constructed with a stay constraint on one end. An
    edit constraint is then added to the opposite end and the time is
    measured for adding and removing this constraint, and extracting
    and executing a constraint satisfaction plan. There are two cases.
    In case 1, the added constraint is stronger than the stay
    constraint and values must propagate down the entire length of the
    chain. In case 2, the added constraint is weaker than the stay
    constraint so it cannot be accomodated. The cost in this case is,
    of course, very low. Typical situations lie somewhere between these
    two extremes.
    """
    planner = recreate_planner()
    prev: Variable | None = None
    first: Variable | None = None
    last: Variable | None = None

    # We need to go up to n inclusively.
    i: int64 = 0
    end: int64 = n + 1
    while i < n + 1:
        name = "v%s" % box(i)
        v = Variable(name)

        if prev is not None:
            EqualityConstraint(prev, v, REQUIRED)

        if i == 0:
            first = v

        if i == n:
            last = v

        prev = v

        i = i + 1

    first = cast(Variable, first)
    last = cast(Variable, last)

    StayConstraint(last, STRONG_DEFAULT)
    edit = EditConstraint(first, PREFERRED)
    edits: CheckedList[UrnaryConstraint] = []
    edits.append(edit)
    plan = planner.extract_plan_from_constraints(edits)

    i = 0
    while i < 100:
        first.value = i
        plan.execute()

        if last.value != i:
            print("Chain test failed.")

        i = i + 1


def projection_test(n: int64) -> None:
    """
    This test constructs a two sets of variables related to each
    other by a simple linear transformation (scale and offset). The
    time is measured to change a variable on either side of the
    mapping and to change the scale and offset factors.
    """
    planner = recreate_planner()
    scale = Variable("scale", 10)
    offset = Variable("offset", 1000)
    src: Variable | None = None

    dests: CheckedList[Variable] = []

    i: int64 = 0
    dst = Variable("dst%s" % box(i), i)
    while i < n:
        bi = box(i)
        src = Variable("src%s" % bi, i)
        dst = Variable("dst%s" % bi, i)
        dests.append(dst)
        StayConstraint(src, NORMAL)
        ScaleConstraint(src, scale, offset, dst, REQUIRED)
        i = i + 1

    src = cast(Variable, src)

    change(src, 17)

    if dst.value != 1170:
        print("Projection 1 failed")

    change(dst, 1050)

    if src.value != 5:
        print("Projection 2 failed")

    change(scale, 5)

    i = 0
    while i < n - 1:
        if dests[i].value != (i * 5 + 1000):
            print("Projection 3 failed")
        i = i + 1

    change(offset, 2000)

    i = 0
    while i < n - 1:
        if dests[i].value != (i * 5 + 2000):
            print("Projection 4 failed")
        i = i + 1


def change(v: Variable, new_value: int64) -> None:
    planner = get_planner()
    edit = EditConstraint(v, PREFERRED)
    edits: CheckedList[UrnaryConstraint] = []
    edits.append(edit)

    plan = planner.extract_plan_from_constraints(edits)

    i: int64 = 0
    while i < 10:
        v.value = new_value
        plan.execute()
        i = i + 1

    edit.destroy_constraint()


# HOORAY FOR GLOBALS... Oh wait.
# In spirit of the original, we'll keep it, but ugh.
planner = None


def delta_blue(n: int64) -> None:
    chain_test(n)
    projection_test(n)

from cinder.

Related Issues (20)

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.