Code Monkey home page Code Monkey logo

Comments (4)

alimirzaei avatar alimirzaei commented on July 4, 2024

You can use encoder.predict to map input to latent space:
obj = AAE()
obj.train(...)
L = obj.encoder.predict(X)
Dimention of L is low.

from adverserial-autoencoder-keras.

raktim-mondol avatar raktim-mondol commented on July 4, 2024

thanks. yes it works.
another thing how can i pass values like 1000784 instead of 100028*28?

from adverserial-autoencoder-keras.

raktim-mondol avatar raktim-mondol commented on July 4, 2024

I have changed the img_shape=(28, 28) to img_shape=(784,) but it does not work. Do I need to change anything else in the code?

from adverserial-autoencoder-keras.

raktim-mondol avatar raktim-mondol commented on July 4, 2024

OK DONE IT. THANKS.
Remove the Flatten layer. Add dense layer instead. Remove the Imgrid function from the train as this code only be used for dimensionality reduction.

from keras.models import Sequential, Model
from keras.layers import Dense, Input, Flatten, Reshape
from keras.datasets import mnist
from keras.optimizers import Adam,SGD
from keras.initializers import RandomNormal
import numpy as np
import matplotlib
import helpers
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.ioff()
initializer = RandomNormal(mean=0.0, stddev=0.01, seed=None)
class AAN():
def init(self, img_shape=(784,), encoded_dim=2):
self.encoded_dim = encoded_dim
self.optimizer_reconst = Adam(0.01)
self.optimizer_discriminator = Adam(0.01)
self._initAndCompileFullModel(img_shape, encoded_dim)

def _genEncoderModel(self, img_shape, encoded_dim):
    ''' Build Encoder Model Based on Paper Configuration
    Args:
        img_shape (tuple) : shape of input image
        encoded_dim (int) : number of latent variables
    Return:
        A sequential keras model
    '''
    encoder = Sequential()
    encoder.add(Dense(1000, input_dim=784))
    encoder.add(Dense(1000, activation='relu', kernel_initializer=initializer,
            bias_initializer=initializer))
    encoder.add(Dense(1000, activation='relu', kernel_initializer=initializer,
            bias_initializer=initializer))
    encoder.add(Dense(encoded_dim, kernel_initializer=initializer,
            bias_initializer=initializer))
    encoder.summary()
    return encoder

def _getDecoderModel(self, encoded_dim, img_shape):
    ''' Build Decoder Model Based on Paper Configuration
    Args:
        encoded_dim (int) : number of latent variables
        img_shape (tuple) : shape of target images
    Return:
        A sequential keras model
    '''
    decoder = Sequential()
    decoder.add(Dense(1000, activation='relu', input_dim=encoded_dim, kernel_initializer=initializer,
            bias_initializer=initializer))
    decoder.add(Dense(1000, activation='relu', kernel_initializer=initializer,
            bias_initializer=initializer))
    decoder.add(Dense(np.prod(img_shape), activation='sigmoid', kernel_initializer=initializer,
            bias_initializer=initializer))
    decoder.add(Reshape(img_shape))
    decoder.summary()
    return decoder

def _getDescriminator(self, encoded_dim):
    """ Build Descriminator Model Based on Paper Configuration
    Args:
        encoded_dim (int) : number of latent variables
    Return:
        A sequential keras model
    """
    discriminator = Sequential()
    discriminator.add(Dense(1000, activation='relu',
                            input_dim=encoded_dim, kernel_initializer=initializer,
            bias_initializer=initializer))
    discriminator.add(Dense(1000, activation='relu', kernel_initializer=initializer,
            bias_initializer=initializer))
    discriminator.add(Dense(1, activation='sigmoid', kernel_initializer=initializer,
            bias_initializer=initializer))
    discriminator.summary()
    return discriminator

def _initAndCompileFullModel(self, img_shape, encoded_dim):
    self.encoder = self._genEncoderModel(img_shape, encoded_dim)
    self.decoder = self._getDecoderModel(encoded_dim, img_shape)
    self.discriminator = self._getDescriminator(encoded_dim)
    img = Input(shape=img_shape)
    encoded_repr = self.encoder(img)
    gen_img = self.decoder(encoded_repr)
    self.autoencoder = Model(img, gen_img)
    valid = self.discriminator(encoded_repr)
    self.encoder_discriminator = Model(img, valid)
    self.discriminator.compile(optimizer=self.optimizer_discriminator,
                               loss='binary_crossentropy',
                               metrics=['accuracy'])
    self.autoencoder.compile(optimizer=self.optimizer_reconst,
                             loss ='mse')
    for layer in self.discriminator.layers:
        layer.trainable = False
    self.encoder_discriminator.compile(optimizer=self.optimizer_discriminator,
                                       loss='binary_crossentropy',
                                       metrics=['accuracy'])
def imagegrid(self, epochnumber):
    fig = plt.figure(figsize=[20, 20])
    images = self.generateImages(100)
    for index,img in enumerate(images):
        img = img.reshape((784,))
        ax = fig.add_subplot(10, 10, index+1)
        ax.set_axis_off()
        ax.imshow(img, cmap="gray")
    fig.savefig("images/AAE/"+str(epochnumber)+".png")
    plt.show()
    plt.close(fig)
def generateImages(self, n=100):
    latents = 5*np.random.normal(size=(n, self.encoded_dim))
    imgs = self.decoder.predict(latents)
    return imgs

def train(self, x_train, batch_size=100, epochs=100, save_interval=500):
    half_batch = int(batch_size / 2)
    for epoch in range(epochs):
        #---------------Train Discriminator -------------
        # Select a random half batch of images
        idx = np.random.randint(0, x_train.shape[0], half_batch)
        imgs = x_train[idx]
        # Generate a half batch of new images
        latent_fake = self.encoder.predict(imgs)
        #gen_imgs = self.decoder.predict(latent_fake)
        latent_real = 5*np.random.normal(size=(half_batch, self.encoded_dim))
        valid = np.ones((half_batch, 1))
        fake = np.zeros((half_batch, 1))
        # Train the discriminator
        d_loss_real = self.discriminator.train_on_batch(latent_real, valid)
        d_loss_fake = self.discriminator.train_on_batch(latent_fake, fake)
        d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

        idx = np.random.randint(0, x_train.shape[0], batch_size)
        imgs = x_train[idx]
        # Generator wants the discriminator to label the generated representations as valid
        valid_y = np.ones((batch_size, 1))

        # Train the autoencode reconstruction
        g_loss_reconstruction = self.autoencoder.train_on_batch(imgs, imgs)

        # Train generator
        g_logg_similarity = self.encoder_discriminator.train_on_batch(imgs, valid_y)
        # Plot the progress
        print ("%d [D loss: %f, acc: %.2f%%] [G acc: %f, mse: %f]" % (epoch, d_loss[0], 100*d_loss[1],
               g_logg_similarity[1], g_loss_reconstruction))

if name == 'main':
# Load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype(np.float32) / 255.
x_train = x_train.reshape((x_train.shape[0], 784))
x_test = x_test.astype(np.float32) / 255.
x_test = x_test.reshape((x_test.shape[0], 784))
ann = AAN(encoded_dim=3)
ann.train(x_train)
generated = ann.generateImages(15)
L= helpers.approximateLogLiklihood(generated, x_test)
print "Log Likelihood"
print L
codes = ann.encoder.predict(x_train)

from adverserial-autoencoder-keras.

Related Issues (4)

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.